201 research outputs found

    Comment on `conservative discretizations of the Kepler motion'

    Full text link
    We show that the exact integrator for the classical Kepler motion, recently found by Kozlov ({\it J. Phys. A: Math. Theor.\} {\bf 40} (2007) 4529-4539), can be derived in a simple natural way (using well known exact discretization of the harmonic oscillator). We also turn attention on important earlier references, where the exact discretization of the 4-dimensional isotropic harmonic oscillator has been applied to the perturbed Kepler problem.Comment: 6 page

    An integrating factor matrix method to find first integrals

    Full text link
    In this paper we developed an integrating factor matrix method to derive conditions for the existence of first integrals. We use this novel method to obtain first integrals, along with the conditions for their existence, for two and three dimensional Lotka-Volterra systems with constant terms. The results are compared to previous results obtained by other methods

    An orbit-preserving discretization of the classical Kepler problem

    Full text link
    We present a remarkable discretization of the classical Kepler problem which preserves its trajectories and all integrals of motion. The points of any discrete orbit belong to an appropriate continuous trajectory.Comment: 7 page

    On a two-parameter extension of the lattice KdV system associated with an elliptic curve

    Full text link
    A general structure is developed from which a system of integrable partial difference equations is derived generalising the lattice KdV equation. The construction is based on an infinite matrix scheme with as key ingredient a (formal) elliptic Cauchy kernel. The consistency and integrability of the lattice system is discussed as well as special solutions and associated continuum equations.Comment: Submitted to the proceedings of the Oeresund PDE-symposium, 23-25 May 2002; 17 pages LaTeX, style-file include

    Long-time behaviour of discretizations of the simple pendulum equation

    Full text link
    We compare the performance of several discretizations of the simple pendulum equation in a series of numerical experiments. The stress is put on the long-time behaviour. We choose for the comparison numerical schemes which preserve the qualitative features of solutions (like periodicity). All these schemes are either symplectic maps or integrable (preserving the energy integral) maps, or both. We describe and explain systematic errors (produced by any method) in numerical computations of the period and the amplitude of oscillations. We propose a new numerical scheme which is a modification of the discrete gradient method. This discretization preserves (almost exactly) the period of small oscillations for any time step.Comment: 41 pages, including 18 figures and 4 table

    Invariant varieties of periodic points for some higher dimensional integrable maps

    Full text link
    By studying various rational integrable maps on C^d\mathbf{\hat C}^d with pp invariants, we show that periodic points form an invariant variety of dimension p\ge p for each period, in contrast to the case of nonintegrable maps in which they are isolated. We prove the theorem: {\it `If there is an invariant variety of periodic points of some period, there is no set of isolated periodic points of other period in the map.'}Comment: 24 page

    B\"acklund Transformations of MKdV and Painlev\'e Equations

    Full text link
    For N3N\ge 3 there are SNS_N and DND_N actions on the space of solutions of the first nontrivial equation in the SL(N)MKdVhierarchy,generalizingthetwoSL(N) MKdV hierarchy, generalizing the two Z_2$ actions on the space of solutions of the standard MKdV equation. These actions survive scaling reduction, and give rise to transformation groups for certain (systems of) ODEs, including the second, fourth and fifth Painlev\'e equations.Comment: 8 pages, plain te

    A note on the integrable discretization of the nonlinear Schr\"odinger equation

    Full text link
    We revisit integrable discretizations for the nonlinear Schr\"odinger equation due to Ablowitz and Ladik. We demonstrate how their main drawback, the non-locality, can be overcome. Namely, we factorize the non-local difference scheme into the product of local ones. This must improve the performance of the scheme in the numerical computations dramatically. Using the equivalence of the Ablowitz--Ladik and the relativistic Toda hierarchies, we find the interpolating Hamiltonians for the local schemes and show how to solve them in terms of matrix factorizations.Comment: 24 pages, LaTeX, revised and extended versio

    An integrable multicomponent quad equation and its Lagrangian formulation

    Full text link
    We present a hierarchy of discrete systems whose first members are the lattice modified Korteweg-de Vries equation, and the lattice modified Boussinesq equation. The N-th member in the hierarchy is an N-component system defined on an elementary plaquette in the 2-dimensional lattice. The system is multidimensionally consistent and a Lagrangian which respects this feature, i.e., which has the desirable closure property, is obtained.Comment: 10 page
    corecore