6,783 research outputs found

    New Structure In The Shapley Supercluster

    Get PDF
    We present new radial velocities for 189 galaxies in a 91 sq. deg region of the Shapley supercluster measured with the FLAIR-II spectrograph on the UK Schmidt Telescope. The data reveal two sheets of galaxies linking the major concentrations of the supercluster. The supercluster is not flattened in Declination as was suggested previously and it may be at least 30 percent larger than previously thought with a correspondingly larger contribution to the motion of the Local Group.Comment: LaTex: 2 pages, 1 figure, includes conf_iap.sty style file. To appear in proceedings of The 14th IAP Colloquium: Wide Field Surveys in Cosmology, held in Paris, 1998 May 26--30, eds. S.Colombi, Y.Mellie

    Light to Mass Variations with Environment

    Full text link
    Large and well defined variations exist between the distribution of mass and the light of stars on extragalactic scales. Mass concentrations in the range 10^12 - 10^13 M_sun manifest the most light per unit mass. Group halos in this range are typically the hosts of spiral and irregular galaxies with ongoing star formation. On average M/L_B ~ 90 M_sun/L_sun in these groups . More massive halos have less light per unit mass. Within a given mass range, halos that are dynamically old as measured by crossing times and galaxy morphologies have distinctly less light per unit mass. At the other end of the mass spectrum, below 10^12 M_sun, there is a cutoff in the manifestation of light. Group halos in the range 10^11 - 10^12 M_sun can host dwarf galaxies but with such low luminosities that M/L_B values can range from several hundred to several thousand. It is suspected that there must be completely dark halos at lower masses. Given the form of the halo mass function, it is the low relative luminosities of the high mass halos that has the greatest cosmological implications. Of order half the clustered mass may reside in halos with greater than 10^14 M_sun. By contrast, only 5-10% of clustered mass would lie in entities with less than 10^12 M_sun.Comment: 15 pages, 9 figures, 2 tables, Accepted Astrophysical Journal 619, 000, 2005 (Jan 1

    Blocked algorithms for the reduction to Hessenberg-triangular form revisited

    Get PDF
    We present two variants of Moler and Stewart's algorithm for reducing a matrix pair to Hessenberg-triangular (HT) form with increased data locality in the access to the matrices. In one of these variants, a careful reorganization and accumulation of Givens rotations enables the use of efficient level 3 BLAS. Experimental results on four different architectures, representative of current high performance processors, compare the performances of the new variants with those of the implementation of Moler and Stewart's algorithm in subroutine DGGHRD from LAPACK, Dackland and Kågström's two-stage algorithm for the HT form, and a modified version of the latter which requires considerably less flop

    Architecture-Aware Configuration and Scheduling of Matrix Multiplication on Asymmetric Multicore Processors

    Get PDF
    Asymmetric multicore processors (AMPs) have recently emerged as an appealing technology for severely energy-constrained environments, especially in mobile appliances where heterogeneity in applications is mainstream. In addition, given the growing interest for low-power high performance computing, this type of architectures is also being investigated as a means to improve the throughput-per-Watt of complex scientific applications. In this paper, we design and embed several architecture-aware optimizations into a multi-threaded general matrix multiplication (gemm), a key operation of the BLAS, in order to obtain a high performance implementation for ARM big.LITTLE AMPs. Our solution is based on the reference implementation of gemm in the BLIS library, and integrates a cache-aware configuration as well as asymmetric--static and dynamic scheduling strategies that carefully tune and distribute the operation's micro-kernels among the big and LITTLE cores of the target processor. The experimental results on a Samsung Exynos 5422, a system-on-chip with ARM Cortex-A15 and Cortex-A7 clusters that implements the big.LITTLE model, expose that our cache-aware versions of gemm with asymmetric scheduling attain important gains in performance with respect to its architecture-oblivious counterparts while exploiting all the resources of the AMP to deliver considerable energy efficiency
    corecore