1,472 research outputs found
Shape selection of surface-bound helical filaments: biopolymers on curved membranes
Motivated to understand the behavior of biological filaments interacting with
membranes of various types, we study a theoretical model for the shape and
thermodynamics of intrinsically-helical filaments bound to curved membranes. We
show filament-surface interactions lead to a host of non-uniform shape
equilibria, in which filaments progressively unwind from their native twist
with increasing surface interaction and surface curvature, ultimately adopting
uniform-contact curved shapes. The latter effect is due to non-linear coupling
between elastic twist and bending of filaments on anisotropically-curved
surfaces, such as the cylindrical surfaces considered here. Via a combination
of numerical solutions and asymptotic analysis of shape equilibria we show that
filament conformations are critically sensitive to the surface curvature in
both the strong- and weak-binding limits. These results suggest that local
structure of membrane-bound chiral filaments is generically sensitive to the
curvature-radius of the surface to which it is bound, even when that radius is
much larger than the filament intrinsic pitch. Typical values of elastic
parameters and interaction energies for several prokaryotic and eukaryotic
filaments indicate that biopolymers are inherently very sensitive to the
coupling between twist, interactions and geometry and that this could be
exploited for regulation of a variety of processes such as the targeted
exertion of forces, signaling and self-assembly in response to geometric cues
including the local mean and Gaussian curvatures
SAMplus: adaptive optics at optical wavelengths for SOAR
Adaptive Optics (AO) is an innovative technique that substantially improves
the optical performance of ground-based telescopes. The SOAR Adaptive Module
(SAM) is a laser-assisted AO instrument, designed to compensate ground-layer
atmospheric turbulence in near-IR and visible wavelengths over a large Field of
View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is
focused on enhancing its performance in visible wavelengths and increasing the
instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500
nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40
arcsec, and with the upgrade we expect to deliver images with a FWHM of
arcsec -- up to 0.23 arcsec FWHM PSF under good seeing
conditions. Such capabilities will be fully integrated with the latest SAM
instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne
Instrumentation for Astronomy VII; SPIEastro18
Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap
We present an experimental concept and setup for laser-microwave
double-resonance spectroscopy of highly charged ions in a Penning trap. Such
spectroscopy allows a highly precise measurement of the Zeeman splittings of
fine- and hyperfine-structure levels due the magnetic field of the trap. We
have performed detailed calculations of the Zeeman effect in the framework of
quantum electrodynamics of bound states as present in such highly charged ions.
We find that apart from the linear Zeeman effect, second- and third-order
Zeeman effects also contribute to the splittings on a level of 10^-4 and 10^-8,
respectively, and hence are accessible to a determination within the achievable
spectroscopic resolution of the ARTEMIS experiment currently in preparation
Heat dissipation after nonanatomical lung resection using a laser is mainly due to emission to the environment: an experimental ex vivo study
Laser-directed resection of lung metastases is performed more frequently in recent years. The energy-loaded laser rays heat up the lung tissue, considerably. It is still unclear which mechanism is more important for tissue heat dissipation: the lung perfusion or the tissue emission. Therefore, we created a special experimental model to investigate the spontaneous heat dissipation after nonanatomical lung resection using a diode-pumped laser with a high output power. Experiments were conducted on paracardiac pig lung lobes (n = 12) freshly dissected at the slaughterhouse. Nonanatomical resection of lung parenchyma was performed without lobe perfusion in group 1 (n = 6), while group 2 (n = 6) was perfused at a physiological pressure of 25 cm H(2)O at 37 °C with saline via the pulmonary artery. For this, we used a diode-pumped neodymium-doped yttrium aluminum garnet (Nd:YAG) LIMAX® 120 laser (Gebrüder Martin GmbH & Co. KG, Tuttlingen, Germany) with a wavelength of 1,318 nm and a power output of 100 W. Immediately after completing laser resection, the lungs were monitored with an infrared camera (Type IC 120LV; Trotec, Heinsberg, Germany) while allowed to cool down. The resection surface temperature was taken at 10-s intervals and documented in a freeze-frame until a temperature of 37 °C had been reached. The temperature drop per time unit was analyzed in both groups. Immediately after laser resection, the temperature at the lung surface was 84.33 ± 8.08 °C in group 1 and 76.75 ± 5.33 °C in group 2 (p = 0.29). Group 1 attained the final temperature of 37 °C after 182.95 ± 53.76 s, and group 2 after 121.70 ± 16.02 s (p = 0.01). The temperature drop occurred exponentially in both groups. We calculated both groups’ decays using nonlinear regression, which revealed nearly identical courses. The mean time of tissue temperature of >42 °C, as a surrogate marker for tissue damage, was 97.14 ± 26.90 s in group 1 and 65.00 ± 13.78 s in group 2 (p = 0.02). Heat emission to the environment surpasses heat reduction via perfusion in nonanatomically laser-resected lung lobes. In developing a cooling strategy, a topical cooling method would be promising
Cerebrospinal fluid ferritin—Unspecific and unsuitable for disease monitoring
Background and purpose
Subarachnoid hemorrhage is sometimes difficult to diagnose radiologically. Cerebrospinal fluid (CSF) ferritin has been proposed to be highly specific and sensitive to detect hemorrhagic central nervous system (CNS) disease. We analyzed here the specificity of CSF ferritin in a large series of various CNS diseases and the influence of serum ferritin.
Materials and methods
CSF ferritin, lactate, protein and total cell count were analyzed in 141 samples: neoplastic meningitis (n=62), subarachnoid hemorrhage (n=20), pyogenic infection (n=10), viral infection (n=10), multiple sclerosis (n=10), borreliosis (n=5) and normal controls (n=24). Cerebrospinal fluid ferritin was measured with a microparticle immunoassay. In addition, serum and CSF ferritin were compared in 18 samples of bacterial and neoplastic meningitis.
Results
In CNS hemorrhage, median ferritin was 51.55μg/L (sensitivity: 90%) after the second lumbar puncture. In neoplastic meningitis, the median CSF ferritin was 16.3μg/L (sensitivity: 45%). Interestingly, ferritin was higher in solid tumors than that in hematological neoplasms. In 90% of pyogenic inflammation, ferritin was elevated with a median of 53.35μg/L, while only 50% of patients with viral infection had elevated CSF ferritin. In ventricular CSF, median ferritin was 163μg/L, but only 20.6μg/L in lumbar CSF. Ferritin was normal in multiple sclerosis and borreliosis.
Conclusions
Ferritin was elevated not only in hemorrhagic disease, but also in neoplastic and infectious meningitis. Ferritin was not a reliable marker of the course of disease. The influence of serum ferritin on CSF ferritin is negligible. We conclude that elevated CSF ferritin reliably, but unspecifically indicates severe CNS disease
- …