21,366 research outputs found
Mechanical component screening for scanner
The critical mechanical components of the scan mirror mechanism are described and their evaluation and screening procedures are discussed. A bumper/damper unit is used in the design to reverse motion of the mirror and effect scan and retrace cycles. A wear evaluation was conducted on the bumper impact surfaces that established nylon 6-10 as an acceptable material. The elastomeric dampers were subjected to thermal vacuum tests for condensables and outgassing as well as parametric life tests. The flexure pivots that support the mirror were tested to establish a curve of stress plotted as a function of cycles to failure for rotational operation. The pivots met the life requirement of 150,000,000 cycles at a + or - 2.9 deg amplitude during fatigue testing. Screening procedures were established for dampers and flexure pivots to obtain flight quality components
Braginskii magnetohydrodynamics for arbitrary magnetic topologies: coronal applications
We investigate single-fluid magnetohydrodynamics (MHD) with anisotropic viscosity,
often referred to as Braginskii MHD, with a particular eye to solar coronal applications.
First, we examine the full Braginskii viscous tensor in the single-fluid limit. We pay
particular attention to how the Braginskii tensor behaves as the magnetic field strength
vanishes. The solar corona contains a magnetic field with a complex and evolving
topology, so the viscosity must revert to its isotropic form when the field strength is zero,
e.g. at null points. We highlight that the standard form in which the Braginskii tensor
is written is not suitable for inclusion in simulations as singularities in the individual
terms can develop. Instead, an altered form, where the parallel and perpendicular tensors
are combined, provides the required asymptotic behaviour in the weak-field limit. We
implement this combined form of the tensor into the Lare3D code, which is widely used
for coronal simulations. Since our main focus is the viscous heating of the solar corona,
we drop the drift terms of the Braginskii tensor. In a stressed null point simulation,
we discover that small-scale structures, which develop very close to the null, lead to
anisotropic viscous heating at the null itself (that is, heating due to the anisotropic
terms in the viscosity tensor). The null point simulation we present has a much higher
resolution than many other simulations containing null points so this excess heating is
a practical concern in coronal simulations. To remedy this unwanted heating at the null
point, we develop a model for the viscosity tensor that captures the most important
physics of viscosity in the corona: parallel viscosity for strong field and isotropic viscosity
at null points. We derive a continuum model of viscosity where momentum transport,
described by this viscosity model, has the magnetic field as its preferred orientation.
When the field strength is zero, there is no preferred direction for momentum transport
and viscosity reverts to the standard isotropic form. The most general viscous stress
tensor of a (single-fluid) plasma satisfying these conditions is found. It is shown that
the Braginskii model, without the drift terms, is a specialization of the general model.
Performing the stressed null point simulation with this simplified model of viscosity
reveals very similar heating profiles compared to the full Braginskii model. The new
model, however, does not produce anisotropic heating at the null point, as required.
Since the vast majority of coronal simulations use only isotropic viscosity, we perform the
stressed null point simulation with isotropic viscosity and compare the heating profiles
to those of the anisotropic models. It is shown than the fully isotropic viscosity can
over-estimate the viscous heating by an order of magnitude
Modelling fat and protein concentration curves for Irish dairy cows
peer-reviewedThe objective of this study was to acquire a well-fitting, single-equation model that would represent the fat and protein concentration curves of milk from Irish dairy cows. The dataset consisted of 16,086 records from both spring and autumn calving cows from both experimental and commercial herds. Many models cited in the literature to represent milk yield were examined for their suitability to model constituent curves. Models were tested for goodness-of-fit, adherence to the assumptions of regression analysis, and their ability to predict total fat and protein concentration for an entire lactation. Wilmink’s model best satisfied these criteria. It had the best Mean Square Prediction Error (goodness-of-fit) value, it satisfied the assumptions of regression analysis (multicollinearity, heteroskedasticity, autocorrelation and normality of distribution), and it predicted the actual concentration of the constituents to within 0.01 percentage point
Circumplanetary disks around young giant planets: a comparison between core-accretion and disk instability
Circumplanetary disks can be found around forming giant planets, regardless
of whether core accretion or gravitational instability built the planet. We
carried out state-of-the-art hydrodynamical simulations of the circumplanetary
disks for both formation scenarios, using as similar initial conditions as
possible to unveil possible intrinsic differences in the circumplanetary disk
mass and temperature between the two formation mechanisms. We found that the
circumplanetary disks mass linearly scales with the circumstellar disk mass.
Therefore, in an equally massive protoplanetary disk, the circumplanetary disks
formed in the disk instability model can be only a factor of eight more massive
than their core-accretion counterparts. On the other hand, the bulk
circumplanetary disk temperature differs by more than an order of magnitude
between the two cases. The subdisks around planets formed by gravitational
instability have a characteristic temperature below 100 K, while the core
accretion circumplanetary disks are hot, with temperatures even greater than
1000 K when embedded in massive, optically thick protoplanetary disks. We
explain how this difference can be understood as the natural result of the
different formation mechanisms. We argue that the different temperatures should
persist up to the point when a full-fledged gas giant forms via disk
instability, hence our result provides a convenient criteria for observations
to distinguish between the two main formation scenarios by measuring the bulk
temperature in the planet vicinity.Comment: 12 pages, 9 figures, 1 table, accepted for publication at MNRA
Maneuvering and vibration control of flexible spacecraft
Equations of motion, control strategy, perturbation, rigid-body maneuvers, quasi-modal equations, and vibration control are discussed for flexible spacecraft
In-flight Compressible Turbulent Boundary Layer Measurements on a Hollow Cylinder at a Mach Number of 3.0
Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile
In-flight boundary-layer measurements on a hollow cylinder at a Mach number of 3.0
Skin temperatures, shear forces, surface static pressures, boundary layer pitot pressures, and boundary layer total temperatures were measured on the external surface of a hollow cylinder that was 3.04 meters long and 0.437 meter in diameter and was mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 (a local Mach number of 2.9) and at wall to recovery temperature ratios of 0.66 to 0.91. The local Reynolds number had a nominal value of 4,300,000 per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. In addition, boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor was obtained from the heat transfer and skin friction measurements. The measured data are compared with several boundary layer prediction methods
Thermal response of Space Shuttle wing during reentry heating
A structural performance and resizing (SPAR) finite element thermal analysis computer program was used in the heat transfer analysis of the space shuttle orbiter that was subjected to reentry aerodynamic heatings. One wing segment of the right wing (WS 240) and the whole left wing were selected for the thermal analysis. Results showed that the predicted thermal protection system (TPS) temperatures were in good agreement with the space transportation system, trajectory 5 (STS-5) flight-measured temperatures. In addition, calculated aluminum structural temperatures were in fairly good agreement with the flight data up to the point of touchdown. Results also showed that the internal free convection had a considerable effect on the change of structural temperatures after touchdown
Reentry heating analysis of space shuttle with comparison of flight data
Surface heating rates and surface temperatures for a space shuttle reentry profile were calculated for two wing cross sections and one fuselage cross section. Heating rates and temperatures at 12 locations on the wing and 6 locations on the fuselage are presented. The heating on the lower wing was most severe, with peak temperatures reaching values of 1240 C for turbulent flow and 900 C for laminar flow. For the fuselage, the most severe heating occured on the lower glove surface where peak temperatures of 910 C and 700 C were calculated for turbulent flow and laminar flow, respectively. Aluminum structural temperatures were calculated using a finite difference thermal analyzer computer program, and the predicted temperatures are compared to measured flight data. Skin temperatures measured on the lower surface of the wing and bay 1 of the upper surface of the wing agreed best with temperatures calculated assuming laminar flow. The measured temperatures at bays two and four on the upper surface of the wing were in quite good agreement with the temperatures calculated assuming separated flow. The measured temperatures on the lower forward spar cap of bay four were in good agreement with values predicted assuming laminar flow
- …