83 research outputs found

    Dual kinetic balance approach to basis set expansions for the Dirac equation

    Full text link
    A new approach to finite basis sets for the Dirac equation is developed. It solves the problem of spurious states and, as a result, improves the convergence properties of basis set calculations. The efficiency of the method is demonstrated for finite basis sets constructed from B splines by calculating the one-loop self-energy correction for a hydrogenlike ion.Comment: 14 pages, 1 tabl

    Electric dipole moment of the electron in YbF molecule

    Full text link
    Ab initio calculation of the hyperfine, P-odd, and P,T-odd constants for the YbF molecule was performed with the help of the recently developed technique, which allows to take into account correlations and polarization in the outercore region. The ground state electronic wave function of the YbF molecule is found with the help of the Relativistic Effective Core Potential method followed by the restoration of molecular four-component spinors in the core region of ytterbium in the framework of a non-variational procedure. Core polarization effects are included with the help of the atomic Many Body Perturbation Theory for Yb atom. For the isotropic hyperfine constant A, accuracy of our calculation is about 3% as compared to the experimental datum. The dipole constant Ad (which is much smaller in magnitude), though better than in all previous calculations, is still underestimated by almost 23%. Being corrected within a semiempirical approach for a perturbation of 4f-shell in the core of Yb due to the bond making, this error is reduced to 8%. Our value for the effective electric field on the unpaired electron is 4.9 a.u.=2.5E+10 V/cm.Comment: 7 pages, REVTE

    Experimental ionization of atomic hydrogen with few-cycle pulses

    Get PDF
    We present the first experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an {\it ab initio} simulation over a wide range of laser intensities and electron energies

    A useful form of the recurrence relation between relativistic atomic matrix elements of radial powers

    Full text link
    Recently obtained recurrence formulae for relativistic hydrogenic radial matrix elements are cast in a simpler and perhaps more useful form. This is achieved with the help of a new relation between the rar^a and the βrb\beta r^b terms (β\beta is a 4×44\times 4 Dirac matrix and a,ba, b are constants) in the atomic matrix elements.Comment: 7 pages, no figure

    Calculation of PandP_ and T_ odd effects in $"" sup 205_TIF including electron correlation

    Full text link
    A method and codes for two-step correlation calculation of heavy-atom molecules have been developed, employing the generalized relativistic effective core potential and relativistic coupled cluster (RCC) methods at the first step, followed by nonvariational one-center restoration of proper four-component spinors in the heavy cores. Electron correlation is included for the first time in an ab initio calculation of the interaction of the permanent P,T-odd proton electric dipole moment with the internal electromagnetic field in a molecule. The calculation is performed for the ground state of TlF at the experimental equilibrium, R_e=2.0844 A, and at R=2.1 A, with spin-orbit and correlation effects included by RCC. Calculated results with single cluster amplitudes only are in good agreement (3% and 1%) with recent Dirac-Hartree-Fock (DHF) values of the magnetic parameter M; the larger differences occurring between present and DHF volume parameter (X) values, as well as between the two DHF calculations, are explained. Inclusion of electron correlation by GRECP/RCC with single and double excitations has a major effect on the P,T-odd parameters, decreasing M by 17% and X by 22%.Comment: 5 pages, REVTeX4 style Accepted for publication in Phys.Rev.Letter

    Measurement of the electron's electric dipole moment using YbF molecules: methods and data analysis

    Full text link
    We recently reported a new measurement of the electron's electric dipole moment using YbF molecules [Nature 473, 493 (2011)]. Here, we give a more detailed description of the methods used to make this measurement, along with a fuller analysis of the data. We show how our methods isolate the electric dipole moment from imperfections in the experiment that might mimic it. We describe the systematic errors that we discovered, and the small corrections that we made to account for these. By making a set of additional measurements with greatly exaggerated experimental imperfections, we find upper bounds on possible uncorrected systematic errors which we use to determine the systematic uncertainty in the measurement. We also calculate the size of some systematic effects that have been important in previous electric dipole moment measurements, such as the motional magnetic field effect and the geometric phase, and show them to be negligibly small in the present experiment. Our result is consistent with an electric dipole moment of zero, so we provide upper bounds to its size at various confidence levels. Finally, we review the prospects for future improvements in the precision of the experiment.Comment: 35 pages, 15 figure

    Recurrence relation for relativistic atomic matrix elements

    Full text link
    Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.Comment: 10 pages, no figure

    Measurement of laser intensities approaching 10 15 W/cm 2 with an accuracy of 1%

    Get PDF
    Accurate knowledge of the intensity of focused ultrashort laser pulses is crucial to the correct interpretation of experimental results in strong-field physics. We have developed a technique to measure laser intensities approaching 1015W/cm2 with an accu

    Measurement of the electron electric dipole moment using YbF molecules

    Get PDF
    The most sensitive measurements of the electron electric dipole moment d_e have previously been made using heavy atoms. Heavy polar molecules offer a greater sensitivity to d_e because the interaction energy to be measured is typically 10^3 times larger than in a heavy atom. We report the first measurement of this kind, for which we have used the molecule YbF. Together, the large interaction energy and the strong tensor polarizability of the molecule make our experiment essentially free of the systematic errors that currently limit d_e measurements in atoms. Our first result d_e = (- 0.2 \pm 3.2) x 10^-26 e.cm is less sensitive than the best atom measurement, but is limited only by counting statistics and demonstrates the power of the method.Comment: 4 pages, 4 figures. v2. Minor corrections and clarifications made in response to referee comment
    • …
    corecore