276 research outputs found

    Les campagnes de communication gouvernementales de lutte contre les violences faites aux femmes.

    No full text
    Ce travail se centre sur les campagnes publiques de lutte contre les violences faites aux femmes. Ces campagnes reposent sur une composante de l'action publique. Elles permettront d'obtenir une compréhension du phénomÚne sur plusieurs années et d'appréhender les tendances actuelles des politiques publiques sur les violences

    Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration

    Get PDF
    A mechanistic model predicting the accumulation of tomato fruit sugars was developed in order (i) to dissect the relative influence of three underlying processes: assimilate supply (S), metabolic transformation of sugars into other compounds (M), and dilution by water uptake (D); and (ii) to estimate the genetic variability of S, M, and D. The latter was estimated in a population of 20 introgression lines derived from the introgression of a wild tomato species (Solanum chmielewskii) into S. lycopersicum, grown under two contrasted fruit load conditions. Low load systematically decreased D in the whole population, while S and M were targets of genotype×fruit load interactions. The sugar concentration positively correlated to S and D when the variation was due to genetic introgressions, while it positively correlated to S and M when the variation was due to changes in fruit load. Co-localizations between quantitative trait loci (QTLs) for sugar concentration and QTLs for S, M, and D allowed hypotheses to be proposed on the processes putatively involved at the QTLs. Among the five QTLs for sugar concentration, four co-localized with QTLs for S, M, and D with similar allele effects. Moreover, the processes underlying QTLs for sugar accumulation changed according to the fruit load condition. Finally, for some genotypes, the processes underlying sugar concentration compensated in such a way that they did not modify the sugar concentration. By uncoupling genetic from physiological relationships between processes, these results provide new insights into further understanding of tomato fruit sugar accumulation

    Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies

    Get PDF
    Background: Highly polygenic traits such as fruit weight, sugar content and acidity strongly influence the agroeconomic value of peach varieties. Genomic Selection (GS) can accelerate peach yield and quality gain if predictions show higher levels of accuracy compared to phenotypic selection. The available IPSC 9K SNP array V1 allows standardized and highly reliable genotyping, preparing the ground for GS in peach. Results: A repeatability model (multiple records per individual plant) for genome-enabled predictions in eleven European peach populations is presented. The analysis included 1147 individuals derived from both commercial and non-commercial peach or peach-related accessions. Considered traits were average fruit weight (FW), sugar content (SC) and titratable acidity (TA). Plants were genotyped with the 9K IPSC array, grown in three countries (France, Italy, Spain) and phenotyped for 3–5 years. An analysis of imputation accuracy of missing genotypic data was conducted using the software Beagle, showing that two of the eleven populations were highly sensitive to increasing levels of missing data. The regression model produced, for each trait and each population, estimates of heritability (FW:0.35, SC:0.48, TA:0.53, on average) and repeatability (FW:0.56, SC:0.63, TA:0.62, on average). Predictive ability was estimated in a five-fold cross validation scheme within population as the correlation of true and predicted henotypes. Results differed by populations and traits, but predictive abilities were in general high (FW:0.60, SC:0.72, TA:0.65, on average). Conclusions: This study assessed the feasibility of Genomic Selection in peach for highly polygenic traits linked to yield and fruit quality. The accuracy of imputing missing genotypes was as high as 96%, and the genomic predictive ability was on average 0.65, but could be as high as 0.84 for fruit weight or 0.83 for titratable acidity. The estimated repeatability may prove very useful in the management of the typical long cycles involved in peach productions. All together, these results are very promising for the application of genomic selection to peach breeding programmes.info:eu-repo/semantics/publishedVersio

    Genetic Variability Study in a Wide Germplasm of Domesticated Peach Through High Throughput

    Get PDF
    Peach (Prunus persica (L.) Batsch) is one of the most economically important fruit crops in temperate areas. Classical fruit tree breeding is generally slow and inefficient. Molecular markers could improve its efficiency but, although nowadays many Mendelian traits are mapped in peach and SSR markers have been found to be linked to some of the key major genes, its use in breeding programs is still limited. Main reasons for that are insufficient linkage between the markers and the genes and the lack of markers suitable for medium-high degree of multiplexing. To address this limitation, about 1,300 peach cultivars were genotyped with the 9K peach SNP chip (Verde et al. 2012) in the frame of FruitBreedomics project. This germplasm was chosen to be representative of the genetic diversity present in five germplasm collection in Europe and in China. Out of the 8144SNPs present in the chip, about 4300 were positively genotyped and used for the further analysis. The average number of heterozygous loci in the genotyped accessions was 1186 (spanning from 13 to 2775). The preliminary results of the population structure reveal three main subpopulations and the presence of high number of admixed individuals. LD seems to decay at distance longer than ca. 1 Mb. These results will be instrumental for implementing LD-based mapping of QTLs and genes in peach

    Evaluation of Antioxidant Compounds and Total Sugar Content in a Nectarine [Prunus persica (L.) Batsch] Progeny

    Get PDF
    Epidemiological studies suggest that consumption of fruit rich in phenolic compounds is associated with health-protective effects due to their antioxidant properties. For these reasons quality evaluation has become an important issue in fruit industry and in breeding programs. Phytochemical traits such as total phenolics, flavonoids, anthocyanins, L-ascorbic acid, sugar content and relative antioxidant capacity (RAC) were analyzed over four years in flesh fruit of an F1 population “Venus” × “Big Top” nectarines. Other traits such as harvesting date, yield, fruit weight, firmness, soluble solids concentration (SSC), pH, titratable acidity (TA) and ripening index (RI) were also determined in the progeny. Results showed high variability among genotypes for all analyzed traits. Total phenolics and flavonoids showed significant positive correlations with RAC implying that both are important antioxidant bioactive compounds in peaches. We found genotypes with enhanced antioxidant capacity and a better performance than progenitors, and in consequence the best marketability

    An integrated approach for increasing breeding efficiency in apple and peach in Europe

    Get PDF
    Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond

    Variable response of three Trifolium repens ecotypes to soil flooding by seawater.

    Get PDF
    BACKGROUND AND AIMS: Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts. METHODS: Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering. KEY RESULTS: There was substantial Cl(-) and Na(+) accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil. CONCLUSIONS: The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur

    Linkage map saturation, construction, and comparison in four populations of Prunus

    Get PDF
    One of the objectives of the ISAFRUIT Project was to perform genetic analyses in four populations of Prunus, two of peach (P. persica) and two of apricot (P. armeniaca), in order to identify major genes and quantitative trait loci (QTLs) for characters related to fruit quality. This required the construction of saturated marker maps in each of these populations. Marker maps were available for an intra-specific peach × peach F2, a BC2 peach × P. davidiana (using peach as the recurrent parent), and an apricot × apricot F1. We have further saturated these maps mainly with SSR (simple sequence repeat) markers. A new map, constructed uniquely from SSRs was prepared for a fourth apricot × apricot F1 population. Using anchor markers, we compared these four maps with the reference Prunus map, constructed using an almond × peach F2 population. As previously observed, conservation of synteny and co-linearity were the general rule, providing additional evidence of the high level of similarity between all Prunus genomes. Comparisons of genetic distances between the maps suggested that those involving similar genomes had higher levels of recombination than those with more distant genomes, particularly the inter-specific crosses.The ISAFRUIT Project is funded by the European Commission under Thematic Priority 5 – Food Quality and Safety of the 6th Framework Programme of RTD (Contract No. FP6-FOOD-CT-2006-016279).Peer reviewe
    • 

    corecore