17 research outputs found

    Bioengineered 3D Models for Studying Human Cell–Tuberculosis Interactions

    No full text
    International audienc

    Covalent binding of cyclosporine inhibits irreversibly T-lymphocyte activation

    No full text
    A diazirine derivative of cyclosporine (PL-CS) was used to photolabel recombinant human cyclophilin (rhCyp), the cytosolic receptor for the immunosuppressant cyclosporine. The affinity of PL-CS for rhCyp and the immunosuppressive activity were 10-fold reduced as compared to cyclosporine A. Whereas cyclosporine immunosuppression was fully reversible, UV cross-linking of PL-CS resulted in permanent inhibition of lymphocyte activation as shown by proliferation of anti-CD3 stimulated human peripheral lymphocyte, interleukin (IL)-2 gene transcription and IL-2 synthesis in the human T-leukemia cell line Jurkat. In vivo photolabeling of viable Jurkat cells revealed that a 21-kDa complex was the major radiolabeled product which was identified as a cyclophilin-cyclosporine complex. In addition, cyclophilin B (25 kDa) and proteins of an unidentified nature at 40, 46 and 60 kDa were observed in Jurkat cells. The cyclosporine-resistant human fibroblast cell line MRC5 displayed a different labeling pattern: cyclophilin B (25 kDa) and a 65-kDa protein were the major labeled products, while the 46- and 60-kDa components were not detectable and cyclophilin was only faintly labeled. In summary, covalent cyclosporine binding caused irreversible lymphocyte inactivation and revealed in addition to cyclophilin other specifically labeled proteins in lymphoid cells. The role and identity of these proteins is presently unknown

    Identification of several cyclosporine binding proteins in lymphoid and non-lymphoid cells in vivo

    No full text
    The immunosuppressant cyclosporine A (CSA) has been shown to bind to the ubiquitous cellular protein, cyclophilin, and to inhibit its rotamase activity. In the present study, 3H-cyclosporine diazirine analogue was used to photolabel viable human cells of lymphoid and fibroblast origin in order to identify the intracellular targets for the drug. While cyclophilin was strongly labeled in situ, additional minor cyclosporine-protein complexes of 25, 40, 46 and 60 kDa were identified in the T cell leukemia cell line Jurkat. These proteins bound specifically, since only active CSA but not inactive CSH or FK506 competed for binding. Photolabeling of MRC5 cells, a CSA resistant human fibroblast cell line, revealed a 25 kDa complex as the major product, while the 46 and 60 kDa bands were not detectable and cyclophilin labeling was only faint, even though both MRC5 and Jurkat cells contain similar cyclophilin concentrations. Thus, our data suggest that the intracellular targets of CSA and/or the accessibility to cyclophilin varies considerably in drug sensitive and resistant cell types, which may contribute to explaining the lymphocyte selectivity of the drug

    The cGAS/STING Pathway Is Important for Dendritic Cell Activation but Is Not Essential to Induce Protective Immunity against Mycobacterium tuberculosis Infection

    No full text
    Mycobacterium tuberculosis (Mtb) infection remains a major public health concern. The STING (stimulator of interferon genes) pathway contributes to the cytosolic surveillance of host cells. Most studies on the role of STING activation in Mtb infection have focused on macrophages. Moreover, a detailed investigation of the role of STING during Mtb infection in vivo is required. Here, we deciphered the involvement of STING in the activation of dendritic cells (DCs) and the host response to Mtb infection in vivo. In DCs, this adaptor molecule was important for Ifn-β expression and IL-12 production as well as for the surface expression of the activation markers CD40 and CD86. We also documented that Mtb DNA induces STING activation in murine fibroblasts. In vivo Mtb aerogenic infection induced the upregulation of the STING and cGAS (cyclic GMP-AMP synthase) genes, and Ifn-β pulmonary expression was dependent on both sensors. However, mice deficient for STING or cGAS presented a similar outcome to wild-type controls, with no major alterations in body weight gain, bacterial burden, or survival. Lung inflammation, proinflammatory cytokine production, and inflammatory cell recruitment were similar in STING- and cGAS-deficient mice compared to wild-type controls. In summary, although the STING pathway seems to be crucial for DC activation during Mtb infection, it is dispensable for host protection in vivo

    Bifunctional lipocalin inhibitor of C5 and leukotriene B4 is protective in experimental immune complex alveolitis

    No full text
    OmCI is an ectoparasite derived bifunctional lipocalin that inhibits complement (C) by binding to C5 and also captures the proinflammatory eicosanoid leukotriene B4 (LTB4). We present the crystal structure of recombinant bacterial bOmCI with and without LTB4 at 2.1 Ă… resolution, and test the relative contributions of C5 inhibition and LTB4 binding to amelioration of experimental immune complex acute lung injury alveolitis (IC-ALI). The structure shows why OmCI is able to accommodate LTB4, arachidonic acid (AA) and 12-OH hydroxyeicosatetraenoic acid (HETEs), but not cysteinyl leukotrienes, prostaglandins or thromboxanes. It also reveals that only minor structural changes occur when bOmCI is bound to LTB4 rather than palmitoleic acid (C16H30O2) which is the dominant fatty acid in the binding pocket of recombinant bOmCI. In accord with the minor structural changes and use of opposite faces of OmCI for C5 binding and entry of LTB4, the two activities of the protein appear to be entirely independent - since the binding kinetics to LTB4 do not change when bOmCI is bound to C5 and the affinity for C5 and inhibition of C activation is unaltered by binding LTB4. In a mouse model of IC-ALI OmCI inhibited neutrophil recruitment and microvascular damage, and reduced protein exudation in the bronchoalveolar space. To examine the relative importance of OmCIs independent inhibitory activities in IC-ALI, OmCI was saturated with LTB4. The saturated protein was a less potent inhibitor of lung inflammation, though both LTB4 binding and C inhibition were required for maximum effect. The dual activity of OmCI may have advantages over conventional biotherapeutics, such as monoclonal antibodies, which typically target only single components of the immune syste

    Innate myeloid cell TNFR1 mediates first line defence against primary Mycobacterium tuberculosis infection

    No full text
    TNF is crucial for controlling Mycobacterium tuberculosis infection and understanding how will help immunomodulating the host response. Here we assessed the contribution of TNFR1 pathway from innate myeloid versus T cells. We first established the prominent role of TNFR1 in haematopoietic cells for controlling M. tuberculosis in TNFR1 KO chimera mice. Further, absence of TNFR1 specifically on myeloid cells (M-TNFR1 KO) recapitulated the uncontrolled M. tuberculosis infection seen in fully TNFR1 deficient mice, with increased bacterial burden, exacerbated lung inflammation, and rapid death. Pulmonary IL-12p40 over-expression was attributed to a prominent CD11b(+) Gr1(high) cell population in infected M-TNFR1 KO mice. By contrast, absence of TNFR1 on T-cells did not compromise the control of M. tuberculosis infection over 6-months. Thus, the protective TNF/TNFR1 pathway essential for controlling primary M. tuberculosis infection depends on innate macrophage and neutrophil myeloid cells, while TNFR1 pathway in T cells is dispensable

    Removal of anti-Galα1,3Gal xenoantibodies with an injectable polymer

    No full text
    Preformed and elicited Ab’s against the Galα1,3Gal terminating carbohydrate chains (αGal Ab’s) are the primary cause of hyperacute and acute vascular xenograft rejection in pig-to-primate transplantation. αGal Ab’s are produced by long-lived Ab-producing cells that are not susceptible to pharmacological immunosuppression. We reasoned that antigen-specific elimination of αGal Ab’s might be achieved in vivo by systemic administration of nonimmunogenic polyvalent αGal structures with high avidity for αGal Ab’s. We devised GAS914, a soluble trisaccharide-polylysine conjugate of approximately 500 kDa that effectively competes for αGal binding by αGal IgM (IC(50), 43 nM) and IgG (IC(50), 28 nM) in vitro. Injections of GAS914 in cynomolgus monkeys, at the dose of 1 mg/kg, resulted in the immediate decrease of more than 90% of circulating αGal Ab’s and serum anti-pig cytotoxicity. In baboons, repeated injections of GAS914 effectively reduced both circulating αGal Ab’s and cytotoxicity over several months. Studies with [(14)C]GAS914 in rhesus monkeys and Gal(–/–) mice indicate that GAS914 binds to circulating αGal Ab’s and that the complex is quickly metabolized by the liver and excreted by the kidney. Remarkably, posttreatment αGal Ab titers never exceeded pretreatment levels and no sensitization to either αGal or the polylysine backbone has been observed. Furthermore there was no apparent acute or chronic toxicity associated with GAS914 treatment in primates. We conclude that GAS914 may be used therapeutically for the specific removal of αGal Ab’s

    IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice

    No full text
    The molecular mechanisms of acute lung injury resulting in inflammation and fibrosis are not well established. Here we investigate the roles of the IL-1 receptor 1 (IL-1R1) and the common adaptor for Toll/IL-1R signal transduction, MyD88, in this process using a murine model of acute pulmonary injury. Bleomycin insult results in expression of neutrophil and lymphocyte chemotactic factors, chronic inflammation, remodeling, and fibrosis. We demonstrate that these end points were attenuated in the lungs of IL-1R1– and MyD88-deficient mice. Further, in bone marrow chimera experiments, bleomycin-induced inflammation required primarily MyD88 signaling from radioresistant resident cells. Exogenous rIL-1β recapitulated a high degree of bleomycin-induced lung pathology, and specific blockade of IL-1R1 by IL-1 receptor antagonist dramatically reduced bleomycin-induced inflammation. Finally, we found that lung IL-1β production and inflammation in response to bleomycin required ASC, an inflammasome adaptor molecule. In conclusion, bleomycin-induced lung pathology required the inflammasome and IL-1R1/MyD88 signaling, and IL-1 represented a critical effector of pathology and therapeutic target of chronic lung inflammation and fibrosis

    Murine Cerebral Malaria Development Is Independent of Toll-Like Receptor Signaling

    No full text
    Malaria pigment hemozoin was reported to activate the innate immunity by Toll-like receptor (TLR)-9 engagement. However, the role of TLR activation for the development of cerebral malaria (CM), a lethal complication of malaria infection in humans, is unknown. Using Plasmodium berghei ANKA (PbA) infection in mice as a model of CM, we report here that TLR9-deficient mice are not protected from CM. To exclude the role of other members of the TLR family in PbA recognition, we infected mice deficient for single TLR1, -2, -3, -4, -6, -7, or -9 and their adapter proteins MyD88, TIRAP, and TRIF. In contrast to lymphotoxin α-deficient mice, which are resistant to CM, all TLR-deficient mice were as sensitive to fatal CM development as wild-type control mice and developed typical microvascular damage with vascular leak and hemorrhage in the brain and lung, together with comparable parasitemia, thrombocytopenia, neutrophilia, and lymphopenia. In conclusion, the present data do not exclude the possibility that malarial molecular motifs may activate the innate immune system. However, TLR-dependent activation of innate immunity is unlikely to contribute significantly to the proinflammatory response to PbA infection and the development of fatal CM
    corecore