43 research outputs found
How bulk and surface properties of TiâSiCâ, VâSiCâ, NbâSiCâ and ZrâSiCâ tune reactivity: a computational study
We present several in silico insights into the MAX-phase of early transition metal silicon carbides and explore how these affect carbon dioxide hydrogenation. Periodic density functional methodology is applied to models of Ti4SiC3, V4SiC3, Nb4SiC3 and Zr4SiC3. We find that silicon and carbon terminations are unstable, with sintering occurring in vacuum and significant reconstruction taking place under an oxidising environment. In contrast, the metal terminated surfaces are highly stable and very active towards CO2 reduction. However, we predict that under reaction conditions these surfaces are likely to be oxidised. These results are compared to studies on comparable materials and we predict optimal values for hydrogen evolution and CO2 reduction
Carbon dioxide and water co-adsorption on the low-index surfaces of TiC, VC, ZrC and NbC: a DFT study
We present a theoretical DFT study into the activation of CO2 by TiC, VC, ZrC and NbC. Particular focus is given to the study of CO2/H2O co-adsorption and interaction on four carbide low-index surfaces: {001}, {011}, carbon-terminated {111} and metal-terminated {111}. The adsorption and activation of CO2 is shown to be most exothermic and indeed barrierless on the metal-terminated {111} surfaces, whilst adsorption on the {001} and {011} planes occurs via a small activation energy barrier. In contrast, the carbon-terminated {111} surface proves to be unstable in the presence of the adsorbates. Both water and carbon dioxide adsorb most strongly on TiC and most weakly on NbC, with the strongest co-adsorption interactions being seen in conformations that maximise hydrogen-bonding
Advances in Sustainable Catalysis: A Computational Perspective
The enormous challenge of moving our societies to a more sustainable future offers several exciting opportunities for computational chemists. The first principles approach to âcatalysis by designâ will enable new and much greener chemical routes to produce vital fuels and fine chemicals. This prospective outlines a wide variety of case studies to underscore how the use of theoretical techniques, from QM/MM to unrestricted DFT and periodic boundary conditions, can be applied to biocatalysis and to both homogeneous and heterogenous catalysts of all sizes and morphologies to provide invaluable insights into the reaction mechanisms they catalyze
Bulk and surface properties of metal carbides: implications for catalysis
We present a comprehensive study of the bulk and surface properties of transition metal carbides with rock salt structures and discuss their formation energies and electronic structures. The bonding character of the materials is shown to be dependent on the periodic position of the transition metal as well as the surface termination, which in turn tunes the densities of states and electronic surface properties. Specific focus is given to the possible catalytic implications of the surface properties on CO2 hydrogenation
Hydrogen adsorption on transition metal carbides: a DFT study
Transition metal carbides are a class of materials widely known for both their interesting physical properties and catalytic activity. In this work, we have used plane-wave DFT methods to study the interaction with increasing amounts of molecular hydrogen on the low-index surfaces of four major carbides â TiC, VC, ZrC and NbC. Adsorption is found to be generally exothermic and occurs predominantly on the surface carbon atoms. We identify trends over the carbides and their surfaces for the energetics of the adsorption as a function of their electronic and geometrical characteristics. An ab initio thermodynamics formalism is used to study the properties of the slabs as the hydrogen coverage is increased
Advances in sustainable catalysis: A computational perspective
The enormous challenge of moving our societies to a more sustainable future offers several exciting opportunities for computational chemists. The first principles approach to "catalysis by design" will enable new and much greener chemical routes to produce vital fuels and fine chemicals. This prospective outlines a wide variety of case studies to underscore how the use of theoretical techniques, from QM/MM to unrestricted DFT and periodic boundary conditions, can be applied to biocatalysis and to both homogeneous and heterogenous catalysts of all sizes and morphologies to provide invaluable insights into the reaction mechanisms they catalyze
Mixing thermodynamics and electronic structure of the Pt1âxNix (0 †x †1) bimetallic alloy
The development of affordable bifunctional platinum alloys as electrode materials for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains one of the biggest challenges for the transition towards renewable energy sources. Yet, there is very little information on the optimal ratio between platinum and the transition metal used in the alloy and its impact on the electronic properties. Here, we have employed spin-polarised density functional simulations with long-range dispersion corrections [DFTâD3â(BJ)], to investigate the thermodynamics of mixing, as well as the electronic and magnetic properties of the Pt1âxNix solid solution. The Ni incorporation is an exothermic process and the alloy composition Pt0.5Ni0.5 is the most thermodynamically stable. The Pt0.5Ni0.5 solid solution is highly ordered as it is composed mainly of two symmetrically inequivalent configurations of homogeneously distributed atoms. We have obtained the atomic projections of the electronic density of states and band structure, showing that the Pt0.5Ni0.5 alloy has metallic character. The suitable electronic properties of the thermodynamically stable Pt0.5Ni0.5 solid solution shows promise as a sustainable catalyst for future regenerative fuel cells
Elucidating the Significance of Copper and Nitrate Speciation in Cu-SSZ-13 for NâO Formation during NHâ-SCR
Unwanted N2O formation is a problem that has been noted in selective catalytic reduction (SCR) where copper zeolite catalysts are utilized. With its immense global warming potential and long-term stability, elevated atmospheric N2O has already been identified as a future challenge in the war on climate change. This paper explores the phenomenon of N2O formation during NH3-SCR over Cu-SSZ-13 catalysts, which are currently commercialized in automotive emissions control systems, and proposes a link between N2O production and the local copper environment found within the zeolite. To achieve this, a comparison is made between two Cu-SSZ-13 samples with different copper co-ordinations produced via different synthesis methods. A combination of synchrotron X-ray absorption near-edge spectroscopy, UVâvis, Raman, and density functional theory (DFT) is used to characterize the nature of copper species present within each sample. Synchrotron IR microspectroscopy is then used to compare their behavior during SCR under operando conditions and monitor the evolution of nitrate intermediates, which, along with further DFT, informs a mechanistic model for nitrate decomposition pathways. Increased N2O production is seen in the Cu-SSZ-13 sample postulated to contain a linear Cu species, providing an important correlation between the catalytic behavior of Cu-zeolites and the nature of their metal ion loading and speciation
Ethylene carbonate adsorption on the major surfaces of lithium manganese oxide Li1âxMn2O4 spinel (0.000 < x < 0.375): a DFT+U-D3 study
Understanding the surface reactivity of the commercial cathode material LiMn2O4 towards the electrolyte is important to improve the cycling performance of secondary lithium-ion batteries and to prevent manganese dissolution. In this work, we have employed spin-polarized density functional theory calculations with on-site Coulomb interactions and long-range dispersion corrections [DFT+U-D3-(BJ)] to investigate the adsorption of the electrolyte component ethylene carbonate (EC) onto the (001), (011) and (111) surfaces of the fully lithiated and partially delithiated Li1âxMn2O4 spinel (0.000 < x < 0.375). The surface interactions were investigated by evaluating the adsorption energies of the EC molecule and the surface free energies. Furthermore, we analyzed the impact of EC adsorption on the Wulff crystal morphologies, the molecular vibrational frequencies and the adsorbate/surface charge transfers. The adsorption energies indicate that the EC molecule strongly adsorbs on the (111) facet, which is attributed to a bidentate binding configuration. We found that EC adsorption enhances the stability of the (111) facet, as shown by the Wulff crystal morphologies. Although a negligible charge transfer was calculated between the spinel surfaces and the EC molecule, a large charge rearrangement takes place within the surfactant upon adsorption. The wavenumbers of the C[double bond, length as m-dash]O stretching mode for the interacting EC molecule are red-shifted with respect to the isolated adsorbate, suggesting that this bond becomes weaker. The surface free energies show that both the fully lithiated and partially delithiated forms of the LiMn2O4 surfaces are stabilized by the EC molecule
Interfacial Chemistry in the Electrocatalytic Hydrogenation of CO_{2} over C-Supported Cu-Based Systems
Operando soft and hard X-ray spectroscopic techniques were used in combination with plane-wave density functional theory (DFT) simulations to rationalize the enhanced activities of Zn-containing Cu nanostructured electrocatalysts in the electrocatalytic CO2 hydrogenation reaction. We show that at a potential for CO2 hydrogenation, Zn is alloyed with Cu in the bulk of the nanoparticles with no metallic Zn segregated; at the interface, low reducible Cu(I)-O species are consumed. Additional spectroscopic features are observed, which are identified as various surface Cu(I) ligated species; these respond to the potential, revealing characteristic interfacial dynamics. Similar behavior was observed for the Fe-Cu system in its active state, confirming the general validity of this mechanism; however, the performance of this system deteriorates after successive applied cathodic potentials, as the hydrogen evolution reaction then becomes the main reaction pathway. In contrast to an active system, Cu(I)-O is now consumed at cathodic potentials and not reversibly reformed when the voltage is allowed to equilibrate at the open-circuit voltage; rather, only the oxidation to Cu(II) is observed. We show that the Cu-Zn system represents the optimal active ensembles with stabilized Cu(I)-O; DFT simulations rationalize this observation by indicating that Cu-Zn-O neighboring atoms are able to activate CO2, whereas Cu-Cu sites provide the supply of H atoms for the hydrogenation reaction. Our results demonstrate an electronic effect exerted by the heterometal, which depends on its intimate distribution within the Cu phase and confirms the general validity of these mechanistic insights for future electrocatalyst design strategies