398 research outputs found

    On the new translational shape invariant potentials

    Full text link
    Recently, several authors have found new translational shape invariant potentials not present in classic classifications like that of Infeld and Hull. For example, Quesne on the one hand and Bougie, Gangopadhyaya and Mallow on the other have provided examples of them, consisting on deformations of the classical ones. We analyze the basic properties of the new examples and observe a compatibility equation which has to be satisfied by them. We study particular cases of such equation and give more examples of new translational shape invariant potentials.Comment: 9 pages, uses iopart10.clo, version

    Generalized Morse Potential: Symmetry and Satellite Potentials

    Get PDF
    We study in detail the bound state spectrum of the generalized Morse potential~(GMP), which was proposed by Deng and Fan as a potential function for diatomic molecules. By connecting the corresponding Schr\"odinger equation with the Laplace equation on the hyperboloid and the Schr\"odinger equation for the P\"oschl-Teller potential, we explain the exact solvability of the problem by an so(2,2)so(2,2) symmetry algebra, and obtain an explicit realization of the latter as su(1,1)su(1,1)su(1,1) \oplus su(1,1). We prove that some of the so(2,2)so(2,2) generators connect among themselves wave functions belonging to different GMP's (called satellite potentials). The conserved quantity is some combination of the potential parameters instead of the level energy, as for potential algebras. Hence, so(2,2)so(2,2) belongs to a new class of symmetry algebras. We also stress the usefulness of our algebraic results for simplifying the calculation of Frank-Condon factors for electromagnetic transitions between rovibrational levels based on different electronic states.Comment: 23 pages, LaTeX, 2 figures (on request). one LaTeX problem settle

    Application of nonlinear deformation algebra to a physical system with P\"oschl-Teller potential

    Full text link
    We comment on a recent paper by Chen, Liu, and Ge (J. Phys. A: Math. Gen. 31 (1998) 6473), wherein a nonlinear deformation of su(1,1) involving two deforming functions is realized in the exactly solvable quantum-mechanical problem with P\" oschl-Teller potential, and is used to derive the well-known su(1,1) spectrum-generating algebra of this problem. We show that one of the defining relations of the nonlinear algebra, presented by the authors, is only valid in the limiting case of an infinite square well, and we determine the correct relation in the general case. We also use it to establish the correct link with su(1,1), as well as to provide an algebraic derivation of the eigenfunction normalization constant.Comment: 9 pages, LaTeX, no figure

    One dimensional Coulomb-like problem in deformed space with minimal length

    Full text link
    Spectrum and eigenfunctions in the momentum representation for 1D Coulomb potential with deformed Heisenberg algebra leading to minimal length are found exactly. It is shown that correction due to the deformation is proportional to square root of the deformation parameter. We obtain the same spectrum using Bohr-Sommerfeld quantization condition.Comment: 11 pages, typos corrected, references adde

    Multi-indexed (q-)Racah Polynomials

    Get PDF
    As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of `discrete quantum mechanics' with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of `virtual state' vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the `solutions' of the matrix Schr\"odinger equation with negative `eigenvalues', except for one of the two boundary points.Comment: 29 pages. The type II (q-)Racah polynomials are deleted because they can be obtained from the type I polynomials. To appear in J.Phys.

    Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass

    Full text link
    Known shape-invariant potentials for the constant-mass Schrodinger equation are taken as effective potentials in a position-dependent effective mass (PDEM) one. The corresponding shape-invariance condition turns out to be deformed. Its solvability imposes the form of both the deformed superpotential and the PDEM. A lot of new exactly solvable potentials associated with a PDEM background are generated in this way. A novel and important condition restricting the existence of bound states whenever the PDEM vanishes at an end point of the interval is identified. In some cases, the bound-state spectrum results from a smooth deformation of that of the conventional shape-invariant potential used in the construction. In others, one observes a generation or suppression of bound states, depending on the mass-parameter values. The corresponding wavefunctions are given in terms of some deformed classical orthogonal polynomials.Comment: 26 pages, no figure, reduced secs. 4 and 5, final version to appear in JP

    N=2 supersymmetric extension of the Tremblay-Turbiner-Winternitz Hamiltonians on a plane

    Full text link
    The family of Tremblay-Turbiner-Winternitz Hamiltonians HkH_k on a plane, corresponding to any positive real value of kk, is shown to admit a N=2{\cal N} = 2 supersymmetric extension of the same kind as that introduced by Freedman and Mende for the Calogero problem and based on an osp(2/2,R)su(1,1/1){\rm osp}(2/2, \R) \sim {\rm su}(1,1/1) superalgebra. The irreducible representations of the latter are characterized by the quantum number specifying the eigenvalues of the first integral of motion XkX_k of HkH_k. Bases for them are explicitly constructed. The ground state of each supersymmetrized Hamiltonian is shown to belong to an atypical lowest-weight state irreducible representation.Comment: 18 pages, no figur

    Real time omplementations of the Nagao image smoothing filter

    Get PDF
    We present varions ASIC implementations of the Nagao smoothing filter . This filter is used to segment non textural pictures with an edge détection approach . Some changes of the initial algorithm are tested both in term of complexity and performance. Hardware implementations are compared for speed and for silicon area used. Design aspects, like pipelining and maxima computation are discussed.Dans ce papier, nous présentons différentes implantations ASIC d'une version modifiée du filtre de lissage de Nagao utilisé dans une chaîne de segmentation par les contours d'images non texturées pour le contrôle de fabrication. Différentes variantes de l'algorithme initial de Nagao sont comparées en performance et complexité de réalisation. Différentes solutions architecturales matérielles d'une de ces variantes appelée Nagmod sont critiquées en terme de surface et rapidité. Certains aspects du design: l'exploitation du pipeline, la structure d'un opérateur de recherche de maximum sont discuté

    Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics

    Full text link
    In recent years, one of the most interesting developments in quantum mechanics has been the construction of new exactly solvable potentials connected with the appearance of families of exceptional orthogonal polynomials (EOP) in mathematical physics. In contrast with families of (Jacobi, Laguerre and Hermite) classical orthogonal polynomials, which start with a constant, the EOP families begin with some polynomial of degree greater than or equal to one, but still form complete, orthogonal sets with respect to some positive-definite measure. We show how they may appear in the bound-state wavefunctions of some rational extensions of well-known exactly solvable quantum potentials. Such rational extensions are most easily constructed in the framework of supersymmetric quantum mechanics (SUSYQM), where they give rise to a new class of translationally shape invariant potentials. We review the most recent results in this field, which use higher-order SUSYQM. We also comment on some recent re-examinations of the shape invariance condition, which are independent of the EOP construction problem.Comment: 21 pages, no figure; communication at the Symposium Symmetries in Science XV, July 31-August 5, 2011, Bregenz, Austri

    Generalized boson algebra and its entangled bipartite coherent states

    Full text link
    Starting with a given generalized boson algebra U_(h(1)) known as the bosonized version of the quantum super-Hopf U_q[osp(1/2)] algebra, we employ the Hopf duality arguments to provide the dually conjugate function algebra Fun_(H(1)). Both the Hopf algebras being finitely generated, we produce a closed form expression of the universal T matrix that caps the duality and generalizes the familiar exponential map relating a Lie algebra with its corresponding group. Subsequently, using an inverse Mellin transform approach, the coherent states of single-node systems subject to the U_(h(1)) symmetry are found to be complete with a positive-definite integration measure. Nonclassical coalgebraic structure of the U_(h(1)) algebra is found to generate naturally entangled coherent states in bipartite composite systems.Comment: 15pages, no figur
    corecore