23 research outputs found

    Nature of metal-nonmetal transition in metal-ammonia solutions. II. From uniform metallic state to inhomogeneous electronic microstructure

    Full text link
    Applying semi-analytical models of nonideal plasma, we evaluate the behavior of the metallic phase in metal-ammonia solutions (MAS). This behavior is mainly controlled by the degenerate electron gas, which remains stable down to 5 MPM due to high solvent polarizability and strong dielectric screening of solvated ions. Comparing the behavior of the metallic state with those of localized solvated electrons, we have estimated the miscibility gap Δn\Delta n for various alkali metals and found Δn\Delta n(Na)>Δn(> \Delta n(K)). It is rather narrow in Rb-NH3_3 and does not occur in Cs-NH3_3 solutions, which is in full agreement with the experiments. The case of Li is discussed separately. The difference calculated in the excess free energies of the metallic and nonmetallic phases is in the order of kBTk_BT, yielding a thermally fluctuating mixed state at intermediate metal concentrations. It results in a continuous metal-nonmetal (MNM) transition above the consolute point TcT_c and a phase separation below TcT_c. We propose a criterion for the MNM transition which may be attributed to the line of the maximum of compressibility above TcT_c. This line crosses the spinodal one at the critical temperature. Finally, we assert that a new electronic phase similar to microemulsion should also arise between the spinodal and the binodal lines.Comment: 22 pages, 10 figure

    Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating

    No full text
    International audienceCommensurate gratings of deep-metallic grooves have highly localized cavity resonances which do not exist for purely periodic gratings. In this paper we present the experimental dispersion diagram of the reso- nances of a commensurate grating with three sub-wavelength cavities per period. We observe selective light localization within the cavities, transition from a localized to a delocalized mode and modifications of the coupling of modes with the external plane-wave that may lead to the generation of black modes. This unexpected complexity is analyzed via a theoretical study in full agreement with the experiments. These results open a way to the control of wavelength-dependent hot spot predicted in more complex commensurate grating

    Controlling strong EM fields at a sub-wavelength scale

    No full text
    International audienc

    Une nouvelle approche pour l'etude des composes a ondes de densite de charge : consequences de la brisure d'analyticite

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Comment on "Model of saturated lithium ammonia as a single-component liquid metal"

    No full text
    International audienceWe demonstrate in this Comment that the theory of simple metals applied to the saturated Li-NH3 solution in the titled paper [U. Pinsook and S. Hannongbua, J. Chem. Phys.124, 074702 (2006)] should account for the peculiarities of the solution, namely, the high solvent polarizability and different energy scales for ion-ion and electron-electron interactions. Calculations not taking into account these peculiarities contradict the experimental phase diagram of the Li-NH3 solution

    Non-metal-to-metal transition driven by van der Waals forces in an interacting polaronic gas

    No full text
    International audienceUsing path integrals and the theory of polarizable fluids, we develop a model treating non-degenerate interacting Fröhlich polarons at low densities and temperatures. Starting from the dilute regime, we show that at strong electron-phonon coupling, the collective properties of polarons are mainly governed by the London dispersion forces, i.e. induced dipole-dipole van der Waals interactions. At a critical density, these forces provoke a non-metal-to-metal transition by means of a polarization catastrophe and a mechanical instability, which results in a polaron dissociation

    Localisation de la lumière dans des rugosités de taille nanométrique de surfaces métalliques traitée par les équations intégrales et les ondelettes

    No full text
    Le cadre de cette thèse est la simulation numérique de l'interaction de la lumière avec des surfaces métalliques rugueuses pouvant être à l'origine de fortes localisation du champ électromagnétique du à des résonances plasmoniques. Les profils accidentés de ces surfaces ont des tailles caractéristiques de quelques nanomètres de largeur et de quelques dizaines de nanomètres de hauteur. La principale difficulté dans la simulation de tels phénomènes réside dans la diff'erence d'échelle entre la longueur d'onde de l'onde incidente et la taille des rugosités ainsi que les variations brutales du champ magnétique à la surface. Une méthode de simulation adaptée est la résolution numérique d'équations intégrales de surface ayant un profil périodique. Cette méthode a été implémentée en C++ et la part principale de ce travail a été le calcul de la fonction de Green pseudo-périodique. L'intensité du faisceau réfracté ainsi que les cartes de champ proche peuvent être calculées rigoureusement à partir de la solution obtenue. A l'aide de cette méthode, on a montré que des résonances plasmoniques situées dans les cavités d'un réseaux ayant des rainures de forme Gaussienne de taille nanométrique ont un comportement électrostatique similaire à celles des cavités rectangulaires, notamment une réflectivité spéculaire très faible en condition de résonance. Les performances actuelles des ordinateurs limitent cependant les études à des réseaux de petite période. Afin de dépasser ces limitations, on a fait appel à des bases de fonctions permettant de décomposer une fonction en ses parties de résolutions différentes: les ondelettes. Ce travail se conclue par une discussion sur le potentiel de deux utilisations différentes des ondelettes pour la résolution d'équation intégrales.The framework of this thesis is the numerical simulation of the interaction of light with rough metallic surfaces which can be the origin of giant enhancements of the electromagnetic field due to plasmonic resonances. The abrupt profile of these surfaces have characteristic sizes of a few nanometers of width and a few tens of nanometers of height. The main difficulty in the simulation of such phenomena is in the scale difference of the wavelength of the incident wave and the size of the roughness as well as the abrupt variations of the magnetic field at the surface. A suited method of simulation is the numerical resolution of surface integral equations for periodic profile of the surface. This method was implemented in C++ and the main part of this work was the calculation of the pseudo-periodic Green function. The intensity of the refracted beam and that of the electromagnetic field maps are rigorously calculated from the obtained solution. We showed by applying this method that plasmonic resonances situated in the cavity of gratings with Gaussian shaped grooves of nanometric sizes have an electrostatic behaviour similar to that of the rectangular grooves, in particular, a very low specular reflectivity at the resonance. The current performances of computers limit the studies to gratings with a small period. In order to overcome these limitations, we considered a function basis enabling to decompose a functions into its components of different resolutions: the wavelets. This work ends with a discussion on the potential of two different applications of the wavelets to the resolution of integral equations.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore