108 research outputs found

    Overhauling ocean spatial planning to improve marine megafauna conservation

    Get PDF
    Tracking data have led to evidence-based conservation of marine megafauna, but a disconnect remains between the many 1000s of individual animals that have been tracked and the use of these data in conservation and management actions. Furthermore, the focus of most conservation efforts is within Exclusive Economic Zones despite the ability of these species to move 1000s of kilometers across multiple national jurisdictions. To assist the goal of the United Nations General Assembly’s recent effort to negotiate a global treaty to conserve biodiversity on the high seas, we propose the development of a new frontier in dynamic marine spatial management. We argue that a global approach combining tracked movements of marine megafauna and human activities at-sea, and using existing and emerging technologies (e.g., through new tracking devices and big data approaches) can be applied to deliver near real-time diagnostics on existing risks and threats to mitigate global risks for marine megafauna. With technology developments over the next decade expected to catalyze the potential to survey marine animals and human activities in ever more detail and at global scales, the development of dynamic predictive tools based on near real-time tracking and environmental data will become crucial to address increasing risks. Such global tools for dynamic spatial and temporal management will, however, require extensive synoptic data updates and will be dependent on a shift to a culture of data sharing and open access. We propose a global mechanism to store and make such data available in near real-time, enabling a holistic view of space use by marine megafauna and humans that would significantly accelerate efforts to mitigate impacts and improve conservation and management of marine megafauna

    Iron status and Helicobacter pylori infection in symptomatic children: an international multi-centered study

    Get PDF
    Objective:Iron deficiency (ID) and iron deficiency anaemia (IDA) are global major public health problems, particularly in developing countries. Whilst an association between H. pylori infection and ID/IDA has been proposed in the literature, currently there is no consensus. We studied the effects of H. pylori infection on ID/IDA in a cohort of children undergoing upper gastrointestinal endoscopy for upper abdominal pain in two developing and one developed country.Methods:In total 311 children (mean age 10.7±3.2 years) from Latin America - Belo Horizonte/Brazil (n = 125), Santiago/Chile (n = 105) - and London/UK (n = 81), were studied. Gastric and duodenal biopsies were obtained for evaluation of histology and H. pylori status and blood samples for parameters of ID/IDA.Results:The prevalence of H. pylori infection was 27.7% being significantly higher (p<0.001) in Latin America (35%) than in UK (7%). Multiple linear regression models revealed H. pylori infection as a significant predictor of low ferritin and haemoglobin concentrations in children from Latin-America. A negative correlation was observed between MCV (r = -0.26; p = 0.01) and MCH (r = -0.27; p = 0.01) values and the degree of antral chronic inflammation, and between MCH and the degree of corpus chronic (r = -0.29, p = 0.008) and active (r = -0.27, p = 0.002) inflammation.Conclusions:This study demonstrates that H. pylori infection in children influences the serum ferritin and haemoglobin concentrations, markers of early depletion of iron stores and anaemia respectively

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content

    Effect of early and current Helicobacter pylori infection on the risk of anaemia in 6.5-year-old Ethiopian children

    Get PDF
    Background: Epidemiological and clinical studies in high income countries have suggested that Helicobacter pylori (H. pylori) may cause anaemia, but evidence is lacking from low income countries.We examined associations between H. pylori infection in early childhood and anaemia at the age of 6.5 years in an Ethiopian birth cohort. Methods: In 2011/12, 856 children (85.1 % of the 1006 original singletons in a population-based birth cohort) were followed up at age six and half. An interviewer-led questionnaire administered to mothers provided information on demographic and lifestyle variables. Haemoglobin level and red cell indices were examined using an automated haematological analyzer (Cell Dyn 1800, Abbott, USA), and stool samples analyzed for H. pylori antigen. The independent effects of H. pylori infection (measured at age 3.5 and 6.5 years) on anaemia, haemoglobin level, and red cell indices (measured at age 6.5 years) were determined using multiple logistic and linear regression. Results: The prevalence of anemia was 34.8 % (257/739), and the mean (SD) haemoglobin concentration was 11.8 (1.1) gm/dl. Current H. pylori infection at age 6.5 years was positively, though not significantly related to prevalence of anaemia (adjusted OR, 95 % CI, 1.15; 0.69, 1.93, p = 0.59). Any H. pylori infection up to age 6.5 years was significantly associated with an increased risk of anaemia at age 6.5 (adjusted OR, 95 % CI, 1.68; 1.22, 2.32, p = 0.01). A significant reduction in haemoglobin concentration and red cell indices was also observed among children who had any H. pylori infection up to age 6.5 (Hb adjusted β = −0.19, 95 % CI, −0.35 to −0.03, p = 0.01; MCV adjusted β = −2.22, 95 % CI, −3.43 to −1.01, p = 0.01; MCH adjusted β = −0.63, 95 % CI, −1.15 to - 0.12, p = 0.01; and MCHC adjusted β = −0.67, 95 % CI, −1.21 to −0.14, p = 0.01), respectively. Conclusion: This study provides further evidence from a low income country that any H. pylori infection up to age 6.5 is associated with higher prevalence of anaemia, and reduction of haemoglobin level and red cell indices at age 6.5

    Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut

    Get PDF
    The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2–4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission

    Molecular taxonomy of the two Leishmania vectors Lutzomyia umbratilis and Lutzomyia anduzei (Diptera: Psychodidae) from the Brazilian Amazon

    Get PDF
    Background: Lutzomyia umbratilis (a probable species complex) is the main vector of Leishmania guyanensis in the northern region of Brazil. Lutzomyia anduzei has been implicated as a secondary vector of this parasite. These species are closely related and exhibit high morphological similarity in the adult stage; therefore, they have been wrongly identified, both in the past and in the present. This shows the need for employing integrated taxonomy. Methods. With the aim of gathering information on the molecular taxonomy and evolutionary relationships of these two vectors, 118 sequences of 663 base pairs (barcode region of the mitochondrial DNA cytochrome oxidase I - COI) were generated from 72 L. umbratilis and 46 L. anduzei individuals captured, respectively, in six and five localities of the Brazilian Amazon. The efficiency of the barcode region to differentiate the L. umbratilis lineages I and II was also evaluated. The data were analyzed using the pairwise genetic distances matrix and the Neighbor-Joining (NJ) tree, both based on the Kimura Two Parameter (K2P) evolutionary model. Results: The analyses resulted in 67 haplotypes: 32 for L. umbratilis and 35 for L. anduzei. The mean intra-specific genetic distance was 0.008 (0.002 to 0.010 for L. umbratilis; 0.008 to 0.014 for L. anduzei), whereas the mean interspecific genetic distance was 0.044 (0.041 to 0.046), supporting the barcoding gap. Between the L. umbratilis lineages I and II, it was 0.009 to 0.010. The NJ tree analysis strongly supported monophyletic clades for both L. umbratilis and L. anduzei, whereas the L. umbratilis lineages I and II formed two poorly supported monophyletic subclades. Conclusions: The barcode region clearly separated the two species and may therefore constitute a valuable tool in the identification of the sand fly vectors of Leishmania in endemic leishmaniasis areas. However, the barcode region had not enough power to separate the two lineages of L. umbratilis, likely reflecting incipient species that have not yet reached the status of distinct species. © 2013 Scarpassa and Alencar; licensee BioMed Central Ltd

    Epidemiology of Invasive Fungal Infections in Latin America

    Get PDF
    The pathogenic role of invasive fungal infections (IFIs) has increased during the past two decades in Latin America and worldwide, and the number of patients at risk has risen dramatically. Working habits and leisure activities have also been a focus of attention by public health officials, as endemic mycoses have provoked a number of outbreaks. An extensive search of medical literature from Latin America suggests that the incidence of IFIs from both endemic and opportunistic fungi has increased. The increase in endemic mycoses is probably related to population changes (migration, tourism, and increased population growth), whereas the increase in opportunistic mycoses may be associated with the greater number of people at risk. In both cases, the early and appropriate use of diagnostic procedures has improved diagnosis and outcome
    • …
    corecore