15 research outputs found
Label-free Detection of Microcystin-LR in Waters Using Real-Time Potentiometric Biosensors Based on Single-Walled Carbon Nanotubes Imprinted Polymers
Microcystin-LR (MC-LR) is a dangerous toxin found in environmental waters, quantified by high performance liquid chromatography and/or enzyme-linked immunosorbent assays. Quick, low cost and on-site analysis is thus required to ensure human safety and wide screening programs. This work proposes label-free potentiometric sensors made of solid-contact electrodes coated with a surface imprinted polymer on the surface of Multi-Walled Carbon NanoTubes (CNTs) incorporated in a polyvinyl chloride membrane. The imprinting effect was checked by using non-imprinted materials. The MC-LR sensitive sensors were evaluated, characterized and applied successfully in spiked environmental waters. The presented method offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods
Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole
Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters.
The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN) < 500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water.
The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10−5 to 1 × 10−10 and 1 × 10−3 to 1 × 10−8 mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10−8 mol/L) SMX for a sub-Nernstian slope of −40.3 mV/decade from 5.0 × 10−8 to 2.4 × 10−5 mol/L
Host-Tailored Sensors for Leucomalachite Green Potentiometric Measurements
A new biomimetic sensor for leucomalachite green host-guest interactions and potentiometric transduction is presented. The artificial host was imprinted in methacrylic acid or acrylamido-2-methyl-1-propanesulfonic acid-based polymers. Molecularly imprinted particles were dispersed in 2-nitrophenyloctyl ether and trapped in poly(vinyl chloride). The potentiometric sensors exhibited a near-Nernstian response in steady state evaluations, with slopes and detection limits ranging from 45.8 to 81.2 mV and 0.28 to 1.01 , respectively. They were independent from the pH of test solutions within 3 to 5. Good selectivity was observed towards drugs that may contaminate water near fish cultures, such as oxycycline, doxycycline, enrofloxacin, trimethoprim, creatinine, chloramphenicol, and dopamine. The sensors were successfully applied to field monitoring of leucomalachite green in river samples. The method offered the advantages of simplicity, accuracy, applicability to colored and turbid samples, and automation feasibility
Microcystin-LR detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT.
In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template.
In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation
All-Solid-State Potentiometric Sensor Based on Graphene Oxide as Ion-to-Electron Transducer for Nitrate Detection in Water Samples
Graphene oxide (GO) was used as an ion-to-electron transducer for all-solid-state nitrate electrodes based on an alkyl ammonium salt as the sensing element. Commercially available carbon screen-printed electrodes modified with GO were used as conductive substrates, whose morphology and distribution along the surface were evaluated by scanning electron microscopy and Raman spectroscopy. The potentiometric performance of the GO-based electrodes revealed a Nernstian slope of −53.5 ± 2.0 mV decade−1 (R2 = 0.9976 ± 0.0015) in the range from 3.0 × 10−6 to 10−2 M and a lower limit of detection of 1.9 × 10−6 M. An impressive reproducibility between equally prepared electrodes (n = 15) was demonstrated by a variation of −1, and a stable performance (LOD and sensitivity) over 3 months. The applicability of the proposed sensors was demonstrated in determining nitrate levels in water samples with great accuracy, yielding recovery values from 87.8 to 107.9%, and comparable (p > 0.05) results to a commercial nitrate probe. These findings demonstrate the use of GO as an alternative ion-to-electron transducer for the fabrication of all-solid-state potentiometric electrodes
Assessing and comparing the total antioxidant capacity of commercial beverages: application to beers, wines, waters and soft drinks using TRAP, TEAC and FRAP methods.
This work measures and tries to compare the Antioxidant Capacity (AC) of 50 commercial beverages of different kinds: 6 wines, 12 beers, 18 soft drinks and 14 flavoured waters. Because there is no reference procedure established for this purpose, three different optical methods were used to analyse these samples: Total Radical trapping Antioxidant Parameter (TRAP), Trolox Equivalent Antioxidant Capacity (TEAC) and Ferric ion Reducing Antioxidant Parameter (FRAP). These methods differ on the chemical background and nature of redox system. The TRAP method involves the transfer of hydrogen atoms while TEAC and FRAP involves electron transfer reactions. The AC was also assessed against three antioxidants of reference, Ascorbic acid (AA), Gallic acid (GA) and 6-hydroxy-2,5,7,8-tetramethyl- 2-carboxylic acid (Trolox).
The results obtained were analyzed statistically. Anova one-way tests were applied to all results and suggested that methods and standards exhibited significant statistical differences. The possible effect of sample features in the AC, such as gas, flavours, food colouring, sweeteners, acidity regulators, preservatives, stabilizers, vitamins, juice percentage, alcohol percentage, antioxidants and the colour was also investigated. The AC levels seemed to change with brand, kind of antioxidants added, and kind of flavour, depending on the sample. In general, higher ACs were obtained for FRAP as method, and beer for kind of sample, and the standard expressing the smaller AC values was GA
Recycling old screen-printed electrodes with newly designed plastic antibodies on the wall of carbon nanotubes as sensory element for in situ detection of bacterial toxins in water
Using low cost portable devices that enable a single analytical step for screening environmental contaminants
is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes
that were to be disposed of and by choosing as sensory element a low cost material offering specific
response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being
dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a
plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific
response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional
electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by
preparing blank materials where the imprinting stage was made without the template molecule.
The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric
measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer
solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection
capabilities below 1 nM. The blank materials were unable to provide a linear response against
log(concentration), showing only a slight potential change towards more positive potentials with increasing
concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum
rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium
ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was
successfully tested on the analysis of spiked environmental water samples. The sensors were further
applied onto recycled chips, comprehending one site for the reference electrode and two sites for different
selective membranes, in a biparametric approach for “in situ” analysis