66 research outputs found
A Systematic Review of Sensorimotor Function during Adolescence: A Developmental Stage of Increased Motor Awkwardness?
Background Although adolescent motor awkwardness and increased injury susceptibility have often been speculated and researched, studies regarding adolescent regressions in motor control have yielded inconsistent conclusions. Thus, the relationship between adolescent maturation and injury risk remains unclear. The purpose of this study was to systematically review the literature relative to two questions: (1) Which sensorimotor mechanisms are not fully mature by the time children reach adolescence? and (2) Is adolescence a period when children exhibit delays or regressions in sensorimotor mechanisms
Barriers to Predicting the Mechanisms and Risk Factors of Non-Contact Anterior Cruciate Ligament Injury
High incidences of non-contact anterior cruciate ligament (ACL) injury, frequent requirements for ACL reconstruction, and limited understanding of ACL mechanics have engendered considerable interest in quantifying the ACL loading mechanisms. Although some progress has been made to better understand non-contact ACL injuries, information on how and why non-contact ACL injuries occur is still largely unavailable. In other words, research is yet to yield consensus on injury mechanisms and risk factors. Biomechanics, video analysis, and related study approaches have elucidated to some extent how ACL injuries occur. However, these approaches are limited because they provide estimates, rather than precise measurements of knee - and more specifically ACL - kinematics at the time of injury. These study approaches are also limited in their inability to simultaneously capture many of the contributing factors to injury
Team sports performance analysed through the lens of social network theory: implications for research and practice
This paper discusses how social network analyses and graph theory can be implemented in team sports performance analyses to evaluate individual (micro) and collective (macro) performance data, and how to use this information for designing practice tasks. Moreover, we briefly outline possible limitations of social network studies and provide suggestions for future research. Instead of cataloguing discrete events or player actions, it has been argued that researchers need to consider the synergistic interpersonal processes emerging between teammates in competitive performance environments. Theoretical assumptions on team coordination prompted the emergence of innovative, theoretically-driven methods for assessing collective team sport behaviours. Here, we contribute to this theoretical and practical debate by conceptualising sports teams as complex social networks. From this perspective, players are viewed as network nodes, connected through relevant information variables (e.g., a ball passing action), sustaining complex patterns of interaction between teammates (e.g., a ball passing network). Specialized tools and metrics related to graph theory could be applied to evaluate structural and topological properties of interpersonal interactions of teammates, complementing more traditional analysis methods. This innovative methodology moves beyond use of common notation analysis methods, providing a richer understanding of the complexity of interpersonal interactions sustaining collective team sports performance. The proposed approach provides practical applications for coaches, performance analysts, practitioners and researchers by establishing social network analyses as a useful approach for capturing the emergent properties of interactions between players in sports teams
Developing a fuzzy multi-criteria decision-making model for selecting design-build operational variations
Many academic researchers have conducted studies on the selection of design-build (DB) delivery method; however, there are few studies on the selection of DB operational variations, which poses challenges to many clients. The selection of DB operational variation is a multi-criteria decision making process that requires clients to objectively evaluate the performance of each DB operational variation with reference to the selection criteria. This evaluation process is often characterized by subjectivity and uncertainty. In order to resolve this deficiency, the current investigation aimed to establish a fuzzy multicriteria decision-making (FMCDM) model for selecting the most suitable DB operational variation. A three-round Delphi questionnaire survey was conducted to identify the selection criteria and their relative importance. A fuzzy set theory approach, namely the modified horizontal approach with the bisector error method, was applied to establish the fuzzy membership functions, which enables clients to perform quantitative calculations on the performance of each DB operational variation. The FMCDM was developed using the weighted mean method to aggregate the overall performance of DB operational variations with regard to the selection criteria. The proposed FMCDM model enables clients to perform quantitative calculations in a fuzzy decision-making environment and provides a useful tool to cope with different project attributes
- …