4 research outputs found

    Periodic Model Predictive Control for Tracking Halo Orbits in the Elliptic Restricted Three-Body Problem

    Get PDF
    A periodic model predictive control (MPC) scheme is proposed for tracking halo orbits. The problem is formulated and solved in the elliptic restricted three-body problem (ER3BP) setting. The reference trajectory to be tracked is designed by using eccentricity continuation techniques. The MPC design exploits the periodicity of the tracking model and guarantees exponential stability of the linearized closed-loop system, through a suitable choice of the terminal set and weight matrices. A sum-of-norms cost function is adopted to promote fuel saving. The proposed control scheme is validated on two simulated missions in the Earth-Moon system, which, respectively, involve station keeping on a halo orbit near the L1 Lagrange point and rendezvous to a halo orbit near the L2 Lagrange point. Results illustrate the advantage of designing the reference trajectory and the periodic control directly in the ER3BP setting versus approximate solutions based on the circular restricted three-body problem (CR3BP)

    In-Cylinder Pressure Estimation from Rotational Speed Measurements via Extended Kalman Filter

    Get PDF
    Real-time estimation of the in-cylinder pressure of combustion engines is crucial to detect failures and improve the performance of the engine control system. A new estimation scheme is proposed based on the Extended Kalman Filter, which exploits measurements of the engine rotational speed provided by a standard phonic wheel sensor. The main novelty lies in a parameterization of the combustion pressure, which is generated by averaging experimental data collected in different operating points. The proposed approach is validated on real data from a turbocharged compression ignition engine, including both nominal and off-nominal working conditions. The experimental results show that the proposed technique accurately reconstructs the pressure profile, featuring a fit performance index exceeding 90% most of the time. Moreover, it can track changes in the engine operating conditions as well as detect the presence of cylinder-to-cylinder variations

    Sum-of-Norms Model Predictive Control for Spacecraft Maneuvering

    No full text
    This letter tackles spacecraft optimal control problems in which the cost function is defined by a sum of vector norms, in order to optimize fuel consumption while achieving sparse actuation. A model predictive control (MPC) strategy is devised for such type of problems, accounting for different spacecraft maneuvering modes. Closed-loop stability is guaranteed by a conic Lyapunov function, which is employed as a terminal cost in the formulation. A systematic method to construct such function is presented. The proposed design is compared to a standard quadratic MPC scheme on a long-range rendez-vous mission

    Beam Performance with the LHC Injectors Upgrade

    No full text
    The LHC Injectors Upgrade (LIU) project was put in place between 2010 and 2021 to increase the intensity and brightness in the LHC injectors to match the challenging requirements of the High-Luminosity LHC (HL-LHC) project, while ensuring reliable operation of the injectors complex up to the end of the HL-LHC era (ca. 2040). During the 2019-2020 CERN accelerators shutdown, extensive hardware modifications were implemented in the entire LHC proton and ion injection chains, involving the new Linac4, the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), the Super Proton Synchrotron (SPS) and the ion PS injectors, i.e. the Linac3 and the Low Energy Ion Ring (LEIR). Since 2021, beams have been recommissioned throughout the injectors’ chain and the beam parameters are being gradually ramped up to meet the LIU specifications using new beam dynamics solutions adapted to the upgraded accelerators. This paper focuses on the proton beams and describes the current state of the art
    corecore