3 research outputs found

    Cathodoluminescence spectra of gallium nitride nanorods

    Get PDF
    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio

    Enhanced Ferromagnetic Interaction in Modulation-Doped GaMnN Nanorods

    No full text
    Abstract In this report, ferromagnetic interactions in modulation-doped GaMnN nanorods grown on Si (111) substrate by plasma-assisted molecular beam epitaxy are investigated with the prospect of achieving a room temperature ferromagnetic semiconductor. Our results indicate the thickness of GaN layer in each GaN/MnN pair, as well as Mn-doping levels, are essential for suppressing secondary phases as well as enhancing the magnetic moment. For these optimized samples, structural analysis by high-resolution X-ray diffractometry and Raman spectroscopy verifies single-crystalline modulation-doped GaMnN nanorods with Ga sites substituted by Mn atoms. Energy dispersive X-ray spectrometry shows that the average Mn concentration can be raised from 0.4 to 1.8% by increasing Mn fluxes without formation of secondary phases resulted in a notable enhancement of the saturation magnetization as well as coercive force in these nanorods
    corecore