11 research outputs found

    Business Process Text Sketch Automation Generation Using Large Language Model

    Full text link
    Business Process Management (BPM) is gaining increasing attention as it has the potential to cut costs while boosting output and quality. Business process document generation is a crucial stage in BPM. However, due to a shortage of datasets, data-driven deep learning techniques struggle to deliver the expected results. We propose an approach to transform Conditional Process Trees (CPTs) into Business Process Text Sketches (BPTSs) using Large Language Models (LLMs). The traditional prompting approach (Few-shot In-Context Learning) tries to get the correct answer in one go, and it can find the pattern of transforming simple CPTs into BPTSs, but for close-domain and CPTs with complex hierarchy, the traditional prompts perform weakly and with low correctness. We suggest using this technique to break down a difficult CPT into a number of basic CPTs and then solve each one in turn, drawing inspiration from the divide-and-conquer strategy. We chose 100 process trees with depths ranging from 2 to 5 at random, as well as CPTs with many nodes, many degrees of selection, and cyclic nesting. Experiments show that our method can achieve a correct rate of 93.42%, which is 45.17% better than traditional prompting methods. Our proposed method provides a solution for business process document generation in the absence of datasets, and secondly, it becomes potentially possible to provide a large number of datasets for the process model extraction (PME) domain.Comment: 10 pages, 7 figure

    Spatial-Temporal Variation of AOD Based on MAIAC AOD in East Asia from 2011 to 2020

    No full text
    In recent years, atmospheric aerosol pollution has seriously affected the ecological environment and human health. Understanding the spatial and temporal variation of AOD is essential to revealing the impact of aerosols on the environment. Based on the MAIAC AOD 1 km product from 2011 to 2020, we analyzed AOD’s distribution patterns and trends in different time series across East Asia. The results showed that: (1) The annual average AOD in East Asia varied between 0.203 and 0.246, with a decrease of 14.029%. The areas with high AOD values were mainly located in the North China Plain area, the Sichuan Basin area, and the Ganges Delta area, with 0.497, 0.514, and 0.527, respectively. Low AOD values were mainly found in the Tibetan Plateau and in mountainous areas north of 40° N, with 0.061 in the Tibetan Plateau area. (2) The distribution of AOD showed a logarithmic decreasing trend with increasing altitude. Meanwhile, the lower the altitude, the faster the rate of AOD changes with altitude. (3) The AOD of East Asia showed different variations in characteristics in different seasons. The maximum, minimum, and mean values of AOD in spring and summer were much higher than those in autumn and winter. The monthly average AOD reached a maximum of 0.326 in March and a minimum of 0.190 in November. The AOD showed a continuous downward trend from March to September. The highest quarterly AOD values in the North China Plain occurred in summer, while the highest quarterly AOD values in the Sichuan Basin, the Ganges Delta, and the Tibetan Plateau all occurred in spring, similar to the overall seasonal variation in East Asia

    Validation and Analysis of MAIAC AOD Aerosol Products in East Asia from 2011 to 2020

    No full text
    East Asia is one of the most important sources of aerosols in the world. The distribution of aerosols varies across time and space. Accurate aerosol data is crucial to identify its spatiotemporal dynamics; thus, it is of great significance to obtain and verify new aerosol data for this region. Based on the Aerosol Optical Depth (AOD) data of the Aerosol Robotic Network (AERONET) program for 17 stations from 2011 to 2020, this study comprehensively verified the accuracy and applicability of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD 1 km products among different seasons, elevations, and climate zones over entire East Asia. The results showed that: (1) The overall accuracy of MAIAC AOD was high in East Asia, and the accuracy of Terra was slightly better than that of Aqua. MAIAC AOD showed significant heterogeneity among sites. MAIAC AOD performed well in areas with high vegetation cover and flat terrain, while the inversion accuracy was relatively low in areas with low vegetation cover and high terrain. (2) In general, MAIAC AOD and AERONET AOD showed good agreement in different seasons, presenting as winter > spring > autumn > summer. Yet the accuracy and consistency of Terra AOD product were better than Aqua product. (3) MAIAC AOD showed different accuracy at different elevations and climate zones. It had a high correlation and best inversion accuracy with AERONET AOD at low and medium elevations. MAIAC AOD had better inversion accuracy in the arid and warm temperate zones than that in the equatorial and cold temperate zones. (4) AOD distribution and its trend showed significant spatial differences in East Asia. The high AOD values were dominant in the Sichuan basin and the eastern plains of China, as well as in India and Bangladesh, while the relatively low AOD values were distributed in southwestern China and the areas north of 40°N. AOD in most parts of East Asia showed a negative trend, indicating a great improvement in air quality in these regions

    Thickness-dependent frictional behavior of topological insulator Bi2Se3 nanoplates

    No full text
    © 2020, Springer-Verlag GmbH Germany, part of Springer Nature. Two-dimensional Bi2Se3 TIs were recently found to be the most promising room-temperature topological insulators for its relatively large bulk gap, but its surface frictional response is little investigated. Here, we prepared single-crystalline Bi2Se3 nanoplates with a lateral dimension up to ~ 1 ÎŒm and a thickness of less than 200 nm via a simple polyol method, and the molecular structure and morphology were characterized in detail using different methods. The micro-frictional behavior of Bi2Se3 nanoplates with different thickness is inventively investigated with AFM technique. The atomic stick–slip friction stemming from periodic crystal lattice, and the larger friction force of thinner nanoplates is attributed to the larger adhesion force and enhanced energy dissipation. This work has, for the first time, built the link of the behavior of topological protected surface and mechanical friction behavior of Bi2Se3

    Analog HfxZr1‐xO2 Memristors with Tunable Linearity for Implementation in a Self‐Organizing Map Neural Network

    No full text
    Abstract Doped‐metal oxide‐based memristors, with the potential for improved switching performance and capability for multi‐bit information storage, are attractive candidates in the implementation of artificial neural network (ANN) hardware systems. However, performance and process considerations such as switching behavior and complementary‐metal‐oxide‐semiconductor (CMOS) process compatibility remain a challenge. This study shows that amorphous Zr‐doped HfO2 (HZO) memristors fabricated via a co‐sputtering approach improve the switching performance by providing a controllable knob to modulate defects in the switching layer. At the same time, it satisfies the CMOS process compatibility requirements for industry adoption. HZO memristors with optimized stoichiometry exhibit 30% reduced switching voltages and 50% faster switching as compared to control HfO2 memristors. Concurrently, this study shows that high linearity analog states tuning is achievable via a programming scheme that utilizes voltage pulses with increasing amplitudes. This study further shows via simulation evaluation that HZO memristors implemented in a self‐organizing‐map (SOM) network for Fashion MNIST database classification, achieve an accuracy of 92% with short training cycles. The results thus pave a potential pathway for further development of CMOS process compatible HZO memristors for use in future storage and computing applications

    Improved Performance of HfxZnyO‐Based RRAM and its Switching Characteristics down to 4 K Temperature

    No full text
    Abstract The search for high‐performance resistive random‐access memory (RRAM) devices is essential to pave the way for highly efficient non‐Von Neumann computing architecture. Here, it is reported on an alloying approach using atomic layer deposition for a Zn‐doped HfOx‐based resistive random‐access memory (HfZnO RRAM), with improved performance. As compared with HfOx RRAM, the HfZnO RRAM exhibits reduced switching voltages (>20%) and switching energy (>3×), as well as better uniformity both in voltages and resistance states. Furthermore, the HfZnO RRAM exhibits stable retention exceeding 10 years, as well as write/erase endurance exceeding 105 cycles. In addition, excellent linearity and repeatability of conductance tuning can be achieved using the constant voltage pulse scheme, achieving ≈90% accuracy in a simulated multi‐layer perceptron network for the recognition of modified national institute of standards and technology database handwriting. The HfZnO RRAM is also characterized down to the temperature of 4 K, showing functionality and the elucidation of its carrier conduction mechanism. Hence, a potential pathway for doped‐RRAM to be used in a wide range of temperatures including quantum computing and deep‐space exploration is shown
    corecore