131 research outputs found
Qutrit Dichromatic Calculus and Its Universality
We introduce a dichromatic calculus (RG) for qutrit systems. We show that the
decomposition of the qutrit Hadamard gate is non-unique and not derivable from
the dichromatic calculus. As an application of the dichromatic calculus, we
depict a quantum algorithm with a single qutrit. Since it is not easy to
decompose an arbitrary d by d unitary matrix into Z and X phase gates when d >
2, the proof of the universality of qudit ZX calculus for quantum mechanics is
far from trivial. We construct a counterexample to Ranchin's universality
proof, and give another proof by Lie theory that the qudit ZX calculus contains
all single qudit unitary transformations, which implies that qudit ZX calculus,
with qutrit dichromatic calculus as a special case, is universal for quantum
mechanics.Comment: In Proceedings QPL 2014, arXiv:1412.810
Supplementarity is Necessary for Quantum Diagram Reasoning
The ZX-calculus is a powerful diagrammatic language for quantum mechanics and
quantum information processing. We prove that its \pi/4-fragment is not
complete, in other words the ZX-calculus is not complete for the so called
"Clifford+T quantum mechanics". The completeness of this fragment was one of
the main open problems in categorical quantum mechanics, a programme initiated
by Abramsky and Coecke. The ZX-calculus was known to be incomplete for quantum
mechanics. On the other hand, its \pi/2-fragment is known to be complete, i.e.
the ZX-calculus is complete for the so called "stabilizer quantum mechanics".
Deciding whether its \pi/4-fragment is complete is a crucial step in the
development of the ZX-calculus since this fragment is approximately universal
for quantum mechanics, contrary to the \pi/2-fragment. To establish our
incompleteness result, we consider a fairly simple property of quantum states
called supplementarity. We show that supplementarity can be derived in the
ZX-calculus if and only if the angles involved in this equation are multiples
of \pi/2. In particular, the impossibility to derive supplementarity for \pi/4
implies the incompleteness of the ZX-calculus for Clifford+T quantum mechanics.
As a consequence, we propose to add the supplementarity to the set of rules of
the ZX-calculus. We also show that if a ZX-diagram involves antiphase twins,
they can be merged when the ZX-calculus is augmented with the supplementarity
rule. Merging antiphase twins makes diagrammatic reasoning much easier and
provides a purely graphical meaning to the supplementarity rule.Comment: Generalised proof and graphical interpretation. 16 pages, submitte
Towards a Minimal Stabilizer ZX-calculus
The stabilizer ZX-calculus is a rigorous graphical language for reasoning
about quantum mechanics. The language is sound and complete: one can transform
a stabilizer ZX-diagram into another one using the graphical rewrite rules if
and only if these two diagrams represent the same quantum evolution or quantum
state. We previously showed that the stabilizer ZX-calculus can be simplified
by reducing the number of rewrite rules, without losing the property of
completeness [Backens, Perdrix & Wang, EPTCS 236:1--20, 2017]. Here, we show
that most of the remaining rules of the language are indeed necessary. We do
however leave as an open question the necessity of two rules. These include,
surprisingly, the bialgebra rule, which is an axiomatisation of
complementarity, the cornerstone of the ZX-calculus. Furthermore, we show that
a weaker ambient category -- a braided autonomous category instead of the usual
compact closed category -- is sufficient to recover the meta rule 'only
connectivity matters', even without assuming any symmetries of the generators.Comment: 29 pages, minor updates for v
- …