31,171 research outputs found

    On the performance of a hybrid genetic algorithm in dynamic environments

    Get PDF
    The ability to track the optimum of dynamic environments is important in many practical applications. In this paper, the capability of a hybrid genetic algorithm (HGA) to track the optimum in some dynamic environments is investigated for different functional dimensions, update frequencies, and displacement strengths in different types of dynamic environments. Experimental results are reported by using the HGA and some other existing evolutionary algorithms in the literature. The results show that the HGA has better capability to track the dynamic optimum than some other existing algorithms.Comment: This paper has been submitted to Applied Mathematics and Computation on May 22, 2012 Revised version has been submitted to Applied Mathematics and Computation on March 1, 201

    Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario

    Full text link
    Einstein-Podolsky-Rosen (EPR) steering is an intermediate type of quantum nonlocality which sits between entanglement and Bell nonlocality. A set of correlations is Bell nonlocal if it does not admit a local hidden variable (LHV) model, while it is EPR nonlocal if it does not admit a local hidden variable-local hidden state (LHV-LHS) model. It is interesting to know what states can generate EPR-nonlocal correlations in the simplest nontrivial scenario, that is, two projective measurements for each party sharing a two-qubit state. Here we show that a two-qubit state can generate EPR-nonlocal full correlations (excluding marginal statistics) in this scenario if and only if it can generate Bell-nonlocal correlations. If full statistics (including marginal statistics) is taken into account, surprisingly, the same scenario can manifest the simplest one-way steering and the strongest hierarchy between steering and Bell nonlocality. To illustrate these intriguing phenomena in simple setups, several concrete examples are discussed in detail, which facilitates experimental demonstration. In the course of study, we introduce the concept of restricted LHS models and thereby derive a necessary and sufficient semidefinite-programming criterion to determine the steerability of any bipartite state under given measurements. Analytical criteria are further derived in several scenarios of strong theoretical and experimental interest.Comment: New results added, 13 pages, 3 figures; published in Phys. Rev.

    A Weight-coded Evolutionary Algorithm for the Multidimensional Knapsack Problem

    Get PDF
    A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computational results show that the RWCEA performs better than a weight-coded evolutionary algorithm proposed by Raidl (1999) and to some existing benchmarks, it can yield better results than the ones reported in the OR-library.Comment: Submitted to Applied Mathematics and Computation on April 8, 201
    corecore