10,390 research outputs found
3-D Face Analysis and Identification Based on Statistical Shape Modelling
This paper presents an effective method of statistical shape representation for automatic face analysis and identification in 3-D. The method combines statistical shape modelling techniques and the non-rigid deformation matching scheme. This work is distinguished by three key contributions. The first is the introduction of a new 3-D shape registration method using hierarchical landmark detection and multilevel B-spline warping technique, which allows accurate dense correspondence search for statistical model construction. The second is the shape representation approach, based on Laplacian Eigenmap, which provides a nonlinear submanifold that links underlying structure of facial data. The third contribution is a hybrid method for matching the statistical model and test dataset which controls the levels of the model’s deformation at different matching stages and so increases chance of the successful matching. The proposed method is tested on the public database, BU-3DFE. Results indicate that it can achieve extremely high verification rates in a series of tests, thus providing real-world practicality
Exploring Task Mappings on Heterogeneous MPSoCs using a Bias-Elitist Genetic Algorithm
Exploration of task mappings plays a crucial role in achieving high
performance in heterogeneous multi-processor system-on-chip (MPSoC) platforms.
The problem of optimally mapping a set of tasks onto a set of given
heterogeneous processors for maximal throughput has been known, in general, to
be NP-complete. The problem is further exacerbated when multiple applications
(i.e., bigger task sets) and the communication between tasks are also
considered. Previous research has shown that Genetic Algorithms (GA) typically
are a good choice to solve this problem when the solution space is relatively
small. However, when the size of the problem space increases, classic genetic
algorithms still suffer from the problem of long evolution times. To address
this problem, this paper proposes a novel bias-elitist genetic algorithm that
is guided by domain-specific heuristics to speed up the evolution process.
Experimental results reveal that our proposed algorithm is able to handle large
scale task mapping problems and produces high-quality mapping solutions in only
a short time period.Comment: 9 pages, 11 figures, uses algorithm2e.st
Parallel Finger Search Structures
In this paper we present two versions of a parallel finger structure FS on p processors that supports searches, insertions and deletions, and has a finger at each end. This is to our knowledge the first implementation of a parallel search structure that is work-optimal with respect to the finger bound and yet has very good parallelism (within a factor of O(log p)^2) of optimal). We utilize an extended implicit batching framework that transparently facilitates the use of FS by any parallel program P that is modelled by a dynamically generated DAG D where each node is either a unit-time instruction or a call to FS.
The work done by FS is bounded by the finger bound F_L (for some linearization L of D), i.e. each operation on an item with distance r from a finger takes O(log r+1) amortized work. Running P using the simpler version takes O((T_1+F_L)/p + T_infty + d * ((log p)^2 + log n)) time on a greedy scheduler, where T_1, T_infty are the size and span of D respectively, and n is the maximum number of items in FS, and d is the maximum number of calls to FS along any path in D. Using the faster version, this is reduced to O((T_1+F_L)/p + T_infty + d *(log p)^2 + s_L) time, where s_L is the weighted span of D where each call to FS is weighted by its cost according to F_L. FS can be extended to a fixed number of movable fingers.
The data structures in our paper fit into the dynamic multithreading paradigm, and their performance bounds are directly composable with other data structures given in the same paradigm. Also, the results can be translated to practical implementations using work-stealing schedulers
A statistical shape model for deformable surface
This short paper presents a deformable surface registration scheme which is based on the statistical shape
modelling technique. The method consists of two major processing stages, model building and model
fitting. A statistical shape model is first built using a set of training data. Then the model is deformed and
matched to the new data by a modified iterative closest point (ICP) registration process. The proposed
method is tested on real 3-D facial data from BU-3DFE database. It is shown that proposed method can
achieve a reasonable result on surface registration, and can be used for patient position monitoring in
radiation therapy and potentially can be used for monitoring of the radiation therapy progress for head and
neck patients by analysis of facial articulation
Facial Asymmetry Analysis Based on 3-D Dynamic Scans
Facial dysfunction is a fundamental symptom which often relates to many neurological illnesses, such as stroke, Bell’s palsy, Parkinson’s disease, etc. The current methods for detecting and assessing facial dysfunctions mainly rely on the trained practitioners which have significant limitations as they are often subjective. This paper presents a computer-based methodology of facial asymmetry analysis which aims for automatically detecting facial dysfunctions. The method is based on dynamic 3-D scans of human faces. The preliminary evaluation results testing on facial sequences from Hi4D-ADSIP database suggest that the proposed method is able to assist in the quantification and diagnosis of facial dysfunctions for neurological patients
- …