15,799 research outputs found

    The effects of optically induced non-Abelian gauge field in cold atoms

    Full text link
    We show that N1N-1 degenerate dark states can be generated by coupling NN-fold degenerate ground states and a common excited state with NN laser fields. Interferences between light waves with different frequencies can produce laser fields with time-dependent amplitudes, which can induce not only U(N) non-Abelian vector fields but also the scalar ones for the adiabatic motion of atoms in such laser fields. As an example, a time-periodic gauge potential is produced by applying specific laser fields to a tripod system. Some features of the Landau levels and the ground-state phase diagram of a rotating Bose-Einstein condensate for a concrete gauge field are also discussed.Comment: Revtex 6 pages, 2 figures, version to be published in PR

    Vertex-Coloring 2-Edge-Weighting of Graphs

    Full text link
    A kk-{\it edge-weighting} ww of a graph GG is an assignment of an integer weight, w(e){1,,k}w(e)\in \{1,\dots, k\}, to each edge ee. An edge weighting naturally induces a vertex coloring cc by defining c(u)=uew(e)c(u)=\sum_{u\sim e} w(e) for every uV(G)u \in V(G). A kk-edge-weighting of a graph GG is \emph{vertex-coloring} if the induced coloring cc is proper, i.e., c(u)c(v)c(u) \neq c(v) for any edge uvE(G)uv \in E(G). Given a graph GG and a vertex coloring c0c_0, does there exist an edge-weighting such that the induced vertex coloring is c0c_0? We investigate this problem by considering edge-weightings defined on an abelian group. It was proved that every 3-colorable graph admits a vertex-coloring 33-edge-weighting \cite{KLT}. Does every 2-colorable graph (i.e., bipartite graphs) admit a vertex-coloring 2-edge-weighting? We obtain several simple sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In particular, we show that 3-connected bipartite graphs admit vertex-coloring 2-edge-weighting

    Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions

    Full text link
    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size

    Conversion of 40^{40}K-87^{87}Rb mixtures into stable molecules

    Full text link
    We study the conversion of 40^{40}K and 87^{87}Rb atoms into stable molecules through the stimulated Raman adiabatic passage (STIRAP) in photoassociation assisted with Feshbach resonance. Starting with the mean-field Langrange density, we show that the atom-to-molecule conversion efficiency by STIRAP aided by Feshbach resonance is much larger than that by bare Feshbach resonance. We also study the influence of the population imbalance on the atom-to-molecule conversion.Comment: Revtex, 5 pages, 3 figures; version to appear in PRA (some content changed

    Smart Pacing for Effective Online Ad Campaign Optimization

    Full text link
    In targeted online advertising, advertisers look for maximizing campaign performance under delivery constraint within budget schedule. Most of the advertisers typically prefer to impose the delivery constraint to spend budget smoothly over the time in order to reach a wider range of audiences and have a sustainable impact. Since lots of impressions are traded through public auctions for online advertising today, the liquidity makes price elasticity and bid landscape between demand and supply change quite dynamically. Therefore, it is challenging to perform smooth pacing control and maximize campaign performance simultaneously. In this paper, we propose a smart pacing approach in which the delivery pace of each campaign is learned from both offline and online data to achieve smooth delivery and optimal performance goals. The implementation of the proposed approach in a real DSP system is also presented. Experimental evaluations on both real online ad campaigns and offline simulations show that our approach can effectively improve campaign performance and achieve delivery goals.Comment: KDD'15, August 10-13, 2015, Sydney, NSW, Australi

    The role of inter-well tunneling strength on coherence dynamics of two-species Bose-Einstein condensates

    Full text link
    Coherence dynamics of two-species Bose-Einstein condensates in double wells is investigated in mean field approximation. We show that the system can exhibit decoherence phenomena even without the condensate-environment coupling and the variation tendency of the degree of coherence depends on not only the parameters of the system but also the initial states. We also investigate the time evolution of the degree of coherence for a Rosen-Zener form of tunneling strength, and propose a method to get a condensate system with certain degree of coherence through a time-dependent tunneling strength
    corecore