10,652 research outputs found
Doubly Exponential Solution for Randomized Load Balancing Models with General Service Times
In this paper, we provide a novel and simple approach to study the
supermarket model with general service times. This approach is based on the
supplementary variable method used in analyzing stochastic models extensively.
We organize an infinite-size system of integral-differential equations by means
of the density dependent jump Markov process, and obtain a close-form solution:
doubly exponential structure, for the fixed point satisfying the system of
nonlinear equations, which is always a key in the study of supermarket models.
The fixed point is decomposited into two groups of information under a product
form: the arrival information and the service information. based on this, we
indicate two important observations: the fixed point for the supermarket model
is different from the tail of stationary queue length distribution for the
ordinary M/G/1 queue, and the doubly exponential solution to the fixed point
can extensively exist even if the service time distribution is heavy-tailed.
Furthermore, we analyze the exponential convergence of the current location of
the supermarket model to its fixed point, and study the Lipschitz condition in
the Kurtz Theorem under general service times. Based on these analysis, one can
gain a new understanding how workload probing can help in load balancing jobs
with general service times such as heavy-tailed service.Comment: 40 pages, 4 figure
Nonlinear Markov Processes in Big Networks
Big networks express various large-scale networks in many practical areas
such as computer networks, internet of things, cloud computation, manufacturing
systems, transportation networks, and healthcare systems. This paper analyzes
such big networks, and applies the mean-field theory and the nonlinear Markov
processes to set up a broad class of nonlinear continuous-time block-structured
Markov processes, which can be applied to deal with many practical stochastic
systems. Firstly, a nonlinear Markov process is derived from a large number of
interacting big networks with symmetric interactions, each of which is
described as a continuous-time block-structured Markov process. Secondly, some
effective algorithms are given for computing the fixed points of the nonlinear
Markov process by means of the UL-type RG-factorization. Finally, the Birkhoff
center, the Lyapunov functions and the relative entropy are used to analyze
stability or metastability of the big network, and several interesting open
problems are proposed with detailed interpretation. We believe that the results
given in this paper can be useful and effective in the study of big networks.Comment: 28 pages in Special Matrices; 201
Super-Exponential Solution in Markovian Supermarket Models: Framework and Challenge
Marcel F. Neuts opened a key door in numerical computation of stochastic
models by means of phase-type (PH) distributions and Markovian arrival
processes (MAPs). To celebrate his 75th birthday, this paper reports a more
general framework of Markovian supermarket models, including a system of
differential equations for the fraction measure and a system of nonlinear
equations for the fixed point. To understand this framework heuristically, this
paper gives a detailed analysis for three important supermarket examples: M/G/1
type, GI/M/1 type and multiple choices, explains how to derive the system of
differential equations by means of density-dependent jump Markov processes, and
shows that the fixed point may be simply super-exponential through solving the
system of nonlinear equations. Note that supermarket models are a class of
complicated queueing systems and their analysis can not apply popular queueing
theory, it is necessary in the study of supermarket models to summarize such a
more general framework which enables us to focus on important research issues.
On this line, this paper develops matrix-analytical methods of Markovian
supermarket models. We hope this will be able to open a new avenue in
performance evaluation of supermarket models by means of matrix-analytical
methods.Comment: Randomized load balancing, supermarket model, matrix-analytic method,
super-exponential solution, density-dependent jump Markov process, Batch
Markovian Arrival Process (BMAP), phase-type (PH) distribution, fixed poin
A Computational Framework for the Mixing Times in the QBD Processes with Infinitely-Many Levels
In this paper, we develop some matrix Poisson's equations satisfied by the
mean and variance of the mixing time in an irreducible positive-recurrent
discrete-time Markov chain with infinitely-many levels, and provide a
computational framework for the solution to the matrix Poisson's equations by
means of the UL-type of -factorization as well as the generalized inverses.
In an important special case: the level-dependent QBD processes, we provide a
detailed computation for the mean and variance of the mixing time. Based on
this, we give new highlight on computation of the mixing time in the
block-structured Markov chains with infinitely-many levels through the
matrix-analytic method
Block-Structured Supermarket Models
Supermarket models are a class of parallel queueing networks with an adaptive
control scheme that play a key role in the study of resource management of,
such as, computer networks, manufacturing systems and transportation networks.
When the arrival processes are non-Poisson and the service times are
non-exponential, analysis of such a supermarket model is always limited,
interesting, and challenging.
This paper describes a supermarket model with non-Poisson inputs: Markovian
Arrival Processes (MAPs) and with non-exponential service times: Phase-type
(PH) distributions, and provides a generalized matrix-analytic method which is
first combined with the operator semigroup and the mean-field limit. When
discussing such a more general supermarket model, this paper makes some new
results and advances as follows: (1) Providing a detailed probability analysis
for setting up an infinite-dimensional system of differential vector equations
satisfied by the expected fraction vector, where "the invariance of environment
factors" is given as an important result. (2) Introducing the phase-type
structure to the operator semigroup and to the mean-field limit, and a
Lipschitz condition can be obtained by means of a unified matrix-differential
algorithm. (3) The matrix-analytic method is used to compute the fixed point
which leads to performance computation of this system. Finally, we use some
numerical examples to illustrate how the performance measures of this
supermarket model depend on the non-Poisson inputs and on the non-exponential
service times. Thus the results of this paper give new highlight on
understanding influence of non-Poisson inputs and of non-exponential service
times on performance measures of more general supermarket models.Comment: 65 pages; 7 figure
- …