8,177 research outputs found

    Quantum Crooks fluctuation theorem and quantum Jarzynski equality in the presence of a reservoir

    Full text link
    We consider the quantum mechanical generalization of Crooks Fluctuation Theorem and Jarzynski Equality for an open quantum system. The explicit expression for microscopic work for an arbitrary prescribed protocol is obtained, and the relation between quantum Crooks Fluctuation Theorem, quantum Jarzynski Equality and their classical counterparts are clarified. Numerical simulations based on a two-level toy model are used to demonstrate the validity of the quantum version of the two theorems beyond linear response theory regime.Comment: 6 pages, 3 figures, any comments are welcom

    Jarzynski Equality, Crooks Fluctuation Theorem and the Fluctuation Theorems of Heat for Arbitrary Initial States

    Full text link
    By taking full advantage of the dynamic property imposed by the detailed balance condition, we derive a new refined unified fluctuation theorem (FT) for general stochastic thermodynamic systems. This FT involves the joint probability distribution functions of the final phase space point and a thermodynamic variable. Jarzynski equality, Crooks fluctuation theorem, and the FTs of heat as well as the trajectory entropy production can be regarded as special cases of this refined unified FT, and all of them are generalized to arbitrary initial distributions. We also find that the refined unified FT can easily reproduce the FTs for processes with the feedback control, due to its unconventional structure that separates the thermodynamic variable from the choices of initial distributions. Our result is heuristic for further understanding of the relations and distinctions between all kinds of FTs, and might be valuable for studying thermodynamic processes with information exchange.Comment: 15 pages, 1 tabl

    Thermodynamics of Information Processing Based on Enzyme Kinetics: an Exactly Solvable Model of Information Pump

    Full text link
    Motivated by the recent proposed models of the information engine [D. Mandal and C. Jarzynski, Proc. Natl. Acad. Sci. 109, 11641 (2012)] and the information refrigerator [D. Mandal, H. T. Quan, and C. Jarzynski, Phys. Rev. Lett. 111, 030602 (2013)], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information encoded in the bit stream or (partially) erase the information encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems
    • …
    corecore