2,472 research outputs found

    Privacy-Preserving Detection Method for Transmission Line Based on Edge Collaboration

    Full text link
    Unmanned aerial vehicles (UAVs) are commonly used for edge collaborative computing in current transmission line object detection, where computationally intensive tasks generated by user nodes are offloaded to more powerful edge servers for processing. However, performing edge collaborative processing on transmission line image data may result in serious privacy breaches. To address this issue, we propose a secure single-stage detection model called SecYOLOv7 that preserves the privacy of object detecting. Based on secure multi-party computation (MPC), a series of secure computing protocols are designed for the collaborative execution of Secure Feature Contraction, Secure Bounding-Box Prediction and Secure Object Classification by two non-edge servers. Performance evaluation shows that both computational and communication overhead in this framework as well as calculation error significantly outperform existing works

    First-principles Study of High-Pressure Phase Stability and Superconductivity of Bi4I4

    Full text link
    Bismuth iodide Bi4I4 exhibits intricate crystal structures and topological insulating states that are highly susceptible to influence by environments, making its physical properties highly tunable by external conditions. In this work, we study the evolution of structural and electronic properties of Bi4I4 at high pressure using an advanced structure search method in conjunction with first-principles calculations. Our results indicate that the most stable ambient-pressure monoclinic α−Bi4I4 phase in C2/m symmetry transforms to a trigonal P31c structure (ɛ−Bi4I4) at 8.4 GPa, then to a tetragonal P4/mmm structure (ζ−Bi4I4) above 16.6 GPa. In contrast to the semiconducting nature of ambient-pressure Bi4I4, the two high-pressure phases are metallic, in agreement with reported electrical measurements. The ɛ−Bi4I4 phase exhibits distinct ionic states of Iδ− and (Bi4I3)δ + (δ=0.4123 e), driven by a pressure-induced volume reduction. We show that both ɛ- and ζ−Bi4I4 are superconductors, and the emergence of pressure-induced superconductivity might be intimately linked to the underlying structural phase transitions

    Hawking radiation-quasinormal modes correspondence for large AdS black holes

    Get PDF
    It is well-known that the non-strictly thermal character of the Hawking radiation spectrum generates a natural correspondence between Hawking radiation and black hole quasinormal modes. This main issue has been analyzed in the framework of Schwarzschild black holes, Kerr black holes and nonextremal Reissner-Nordstrom black holes. In this paper, by introducing the effective temperature, we reanalysis the non-strictly thermal character of large AdS black holes. The results show that the effective mass corresponding to the effective temperature is approximatively the average one in any dimension. And the other effective quantities can also be obtained. Based on the known forms of frequency in quasinormal modes, we reanalysis the asymptotic frequencies of the large AdS black hole in three and five dimensions. Then we get the formulas of the Bekenstein-Hawking entropy and the horizon's area quantization with functions of the quantum "overtone" number nn.Comment: 6 page

    Quantum secure direct communication based on order rearrangement of single photons

    Full text link
    Based on the ideal of order rearrangement and block transmission of photons, we present a quantum secure direct communication scheme using single photons. The security of the present scheme is ensured by quantum no-cloning theory and the secret transmitting order of photons. The present scheme is efficient in that all of the polarized photons are used to transmit the sender's secret message except those chosen for eavesdropping check. We also generalize this scheme to a multiparty controlled quantum secret direct communication scheme which the sender's secret message can only be recovered by the receiver under the permission of all the controllers

    The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak

    Get PDF
    The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given

    Decoding Social Sentiment in DAO: A Comparative Analysis of Blockchain Governance Communities

    Full text link
    Blockchain technology is leading a revolutionary transformation across diverse industries, with effective governance standing as a critical determinant for the success and sustainability of blockchain projects. Community forums, pivotal in engaging decentralized autonomous organizations (DAOs), wield a substantial impact on blockchain governance decisions. Concurrently, Natural Language Processing (NLP), particularly sentiment analysis, provides powerful insights from textual data. While prior research has explored the potential of NLP tools in social media sentiment analysis, a gap persists in understanding the sentiment landscape of blockchain governance communities. The evolving discourse and sentiment dynamics on the forums of top DAOs remain largely unknown. This paper delves deep into the evolving discourse and sentiment dynamics on the public forums of leading DeFi projects -- Aave, Uniswap, Curve Dao, Aragon, Yearn.finance, Merit Circle, and Balancer -- placing a primary focus on discussions related to governance issues. Despite differing activity patterns, participants across these decentralized communities consistently express positive sentiments in their Discord discussions, indicating optimism towards governance decisions. Additionally, our research suggests a potential interplay between discussion intensity and sentiment dynamics, indicating that higher discussion volumes may contribute to more stable and positive emotions. The insights gained from this study are valuable for decision-makers in blockchain governance, underscoring the pivotal role of sentiment analysis in interpreting community emotions and its evolving impact on the landscape of blockchain governance. This research significantly contributes to the interdisciplinary exploration of the intersection of blockchain and society, with a specific emphasis on the decentralized blockchain governance ecosystem

    Aqua­(hippurato)bis­(1,10-phenanthroline)cobalt(II) nitrate monohydrate

    Get PDF
    In the title compound, [Co(C9H8NO3)(C12H8N2)2(H2O)]NO3·H2O, the CoII atom is six-coordinated by a carboxylate O atom of the hippurate (Hc) anion, a water O atom and four N atoms from two 1,10-phenanthroline ligands in a distorted octa­hedral geometry. The uncoordinated O atom of the hippuric acid anion is involved in an intra­molecular hydrogen bond to the coordinated water mol­ecule. The crystal packing is stabilized by inter­molecular O—H⋯O hydrogen bonds involving the Hc anions, the coordinated water mol­ecule, the nitrate anion and the uncoordinated water mol­ecule
    • …
    corecore