8,648 research outputs found
Block-Structured Supermarket Models
Supermarket models are a class of parallel queueing networks with an adaptive
control scheme that play a key role in the study of resource management of,
such as, computer networks, manufacturing systems and transportation networks.
When the arrival processes are non-Poisson and the service times are
non-exponential, analysis of such a supermarket model is always limited,
interesting, and challenging.
This paper describes a supermarket model with non-Poisson inputs: Markovian
Arrival Processes (MAPs) and with non-exponential service times: Phase-type
(PH) distributions, and provides a generalized matrix-analytic method which is
first combined with the operator semigroup and the mean-field limit. When
discussing such a more general supermarket model, this paper makes some new
results and advances as follows: (1) Providing a detailed probability analysis
for setting up an infinite-dimensional system of differential vector equations
satisfied by the expected fraction vector, where "the invariance of environment
factors" is given as an important result. (2) Introducing the phase-type
structure to the operator semigroup and to the mean-field limit, and a
Lipschitz condition can be obtained by means of a unified matrix-differential
algorithm. (3) The matrix-analytic method is used to compute the fixed point
which leads to performance computation of this system. Finally, we use some
numerical examples to illustrate how the performance measures of this
supermarket model depend on the non-Poisson inputs and on the non-exponential
service times. Thus the results of this paper give new highlight on
understanding influence of non-Poisson inputs and of non-exponential service
times on performance measures of more general supermarket models.Comment: 65 pages; 7 figure
A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times
In this paper, we provide a matrix-analytic solution for randomized load
balancing models (also known as \emph{supermarket models}) with phase-type (PH)
service times. Generalizing the service times to the phase-type distribution
makes the analysis of the supermarket models more difficult and challenging
than that of the exponential service time case which has been extensively
discussed in the literature. We first describe the supermarket model as a
system of differential vector equations, and provide a doubly exponential
solution to the fixed point of the system of differential vector equations.
Then we analyze the exponential convergence of the current location of the
supermarket model to its fixed point. Finally, we present numerical examples to
illustrate our approach and show its effectiveness in analyzing the randomized
load balancing schemes with non-exponential service requirements.Comment: 24 page
Sensitive Chemical Compass Assisted by Quantum Criticality
The radical-pair-based chemical reaction could be used by birds for the
navigation via the geomagnetic direction. An inherent physical mechanism is
that the quantum coherent transition from a singlet state to triplet states of
the radical pair could response to the weak magnetic field and be sensitive to
the direction of such a field and then results in different photopigments in
the avian eyes to be sensed. Here, we propose a quantum bionic setup for the
ultra-sensitive probe of a weak magnetic field based on the quantum phase
transition of the environments of the two electrons in the radical pair. We
prove that the yield of the chemical products via the recombination from the
singlet state is determined by the Loschmidt echo of the environments with
interacting nuclear spins. Thus quantum criticality of environments could
enhance the sensitivity of the detection of the weak magnetic field.Comment: 4 pages, 3 figure
Wavenet based low rate speech coding
Traditional parametric coding of speech facilitates low rate but provides
poor reconstruction quality because of the inadequacy of the model used. We
describe how a WaveNet generative speech model can be used to generate high
quality speech from the bit stream of a standard parametric coder operating at
2.4 kb/s. We compare this parametric coder with a waveform coder based on the
same generative model and show that approximating the signal waveform incurs a
large rate penalty. Our experiments confirm the high performance of the WaveNet
based coder and show that the speech produced by the system is able to
additionally perform implicit bandwidth extension and does not significantly
impair recognition of the original speaker for the human listener, even when
that speaker has not been used during the training of the generative model.Comment: 5 pages, 2 figure
Mesoscopic circuits with charge discreteness:quantum transmission lines
We propose a quantum Hamiltonian for a transmission line with charge
discreteness. The periodic line is composed of an inductance and a capacitance
per cell. In every cell the charge operator satisfies a nonlinear equation of
motion because of the discreteness of the charge. In the basis of one-energy
per site, the spectrum can be calculated explicitly. We consider briefly the
incorporation of electrical resistance in the line.Comment: 11 pages. 0 figures. Will be published in Phys.Rev.
Quenched Charmed Meson Spectra using Tadpole Improved Quark Action on Anisotropic Lattices
Charmed meson charmonium spectra are studied with improved quark actions on
anisotropic lattices. We measured the pseudo-scalar and vector meson dispersion
relations for 4 lowest lattice momentum modes with quark mass values ranging
from the strange quark to charm quark with 3 different values of gauge coupling
and 4 different values of bare speed of light . With the bare
speed of light parameter tuned in a mass-dependent way, we study the mass
spectra of , , ,
, and mesons.
The results extrapolated to the continuum limit are compared with the
experiment and qualitative agreement is found.Comment: 8 pages, 2 figures, latex fil
Mixed-state fidelity and quantum criticality at finite temperature
We extend to finite temperature the fidelity approach to quantum phase
transitions (QPTs). This is done by resorting to the notion of mixed-state
fidelity that allows one to compare two density matrices corresponding to two
different thermal states. By exploiting the same concept we also propose a
finite-temperature generalization of the Loschmidt echo. Explicit analytical
expressions of these quantities are given for a class of quasi-free fermionic
Hamiltonians. A numerical analysis is performed as well showing that the
associated QPTs show their signatures in a finite range of temperatures.Comment: 7 pages, 4 figure
Spatial organization and evolutional period of the epidemic model using cellular automata
We investigate epidemic models with spatial structure based on the cellular
automata method. The construction of the cellular automata is from the study by
Weimar and Boon about the reaction-diffusion equations [Phys. Rev. E 49, 1749
(1994)]. Our results show that the spatial epidemic models exhibit the
spontaneous formation of irregular spiral waves at large scales within the
domain of chaos. Moreover, the irregular spiral waves grow stably. The system
also shows a spatial period-2 structure at one dimension outside the domain of
chaos. It is interesting that the spatial period-2 structure will break and
transform into a spatial synchronous configuration in the domain of chaos. Our
results confirm that populations embed and disperse more stably in space than
they do in nonspatial counterparts.Comment: 6 papges,5 figures. published in Physics Review
- …