6 research outputs found

    Atomic-scale simulation of physical and chemical processes during space weathering and planet formation

    Get PDF
    We investigate the mechanisms of space weathering and dust grain collisions, two topics of interests from planetary sciences, using atomic-scale simulations. Space weathering is the change in chemical and physical properties of minerals exposed to solar radiation and micrometeorite bombardment on surfaces of airless planetary bodies like the Moon and asteroids. An understanding of the connection between the surface evolution of the minerals and the underlying thermodynamic and kinetic factors is still missing. We address this issue and determine the time evolution of Frenkel defects in the silicate minerals olivine ((Mg,Fe)2_2SiO4_4) and orthopyroxene ((Mg,Fe)SiO3_3) using molecular dynamics with a pair potential. Defect diffusion and clustering are observed in both the minerals. Cation diffusion occurs more readily in olivine than in orthopyroxene and leads to faster annealing in the former. In orthopyroxene, diffusion of anion defects, especially oxygen interstitials, occurs more rapidly and also exhibits anisotropy, which hinders the annealing process. This difference in defect evolution may explain the experimental observation that surface modifications due to irradiation is more pronounced in orthopyroxene than in olivine. Dust grain collision is the dominant process in the initial stage of planet formation, however, the mechanisms by which dust grains grow to larger aggregates and eventually to kilometer sized planetesimal is still not understood. We explore the role of surface chemistry in energy dissipation and grain adhesion during collision of amorphous silica (SiO2_2) nanograins using molecular dynamics with a reactive potential, namely ReaxFF. We found nonhydroxylated amorphous silica nanoparticles stick with higher probability than their hydroxylated counterpart. This difference is attributed to the preponderance of unsatisfied dangling bonds on the dry silicate surface which facilitate bond formation during collision, and thereby provide a mechanism for energy dissipation. The speed below which sticking occurs in the dry nanograins is much higher than that found in Earth-based experiments, which suggests any experimental study of dust grain collision should take into account of the chemical environment. We probe into the nanograin collisions further and carry out atomistic simulatons of collisions of molten silica nanograins. We observed in the molten state, amorphous silica is more sticky than it is in the solid phase. This happens due to increased viscoelastic energy dissipation. The result may explain how rocky planets originated from the inner rings of the protoplanetay disks where temperatures were as high as ∼\sim 2000 K. In order to increase the range of materials that could be simulated with ReaxFF potential, and also to examine the different oxidation states of iron associated with nanophase iron formation during space weathering, we made attempt to develop ReaxFF potential for fayalite (Fe2_2SiO4_4). We found out fundamental limitations of ReaxFF model to describe three-component minerals. However, during the fitting process we developed a model for iron silicide (FeSi), and made attempt to improve the silica model to obtain better elastic properties. We report here the fitting processes and the observed limitations of ReaxFF model

    Physico-chemical factors of solar salt farms water in the coastal area of Cox’s Bazar, Bangladesh

    Get PDF
    Physico-chemical factors of water at different gradient of the salt production pans (reservoir, condenser and crystallizer) of the coastal area in Cox’s Bazar were studied.Analyses of water temperature at different gradient of salt pans show almost similar values (31°C-32°C). The pH values varied from 4.9 to 7.4. The acidic pH values were recorded in Chakaria Sundarban area. Salinity ranged from 30.03‰ to 330.52‰, lowest salinity was found in reservoir pan and highest in crystallizer pan. Electric conductivity values fluctuated between 9.60 and 336.00 mmhos/cm and its values gradually increase from reservoir to crystallizer pans. Total hardness, Ca, Mg and HCO3 varied from 8000 to 213600 mg/l; 2987 to 106300 mg/l, 5013 to 107300 mg/l and 36.6 to 146.4 mg/l respectively and their values were always found to be Reservoir < Condenser< Crystallizer. Alkalinity ranged from 50-570 ppm, the lowest values were recorded in reservoir pan and highest were found in crystallizer. Usually higher concentration of K was obtained in crystallizer pan and the highest value (15.2g/l) was recorded at Moheskhali sampling area

    Strong Catalytic Activity Of Iron Nanoparticles On The Surfaces Of Reduced Olivine

    No full text
    It is demonstrated that olivine powders heated to subsolidus temperatures in reducing conditions can develop significant concentrations of 10–50 nm diameter Fe nanoparticles on grain surfaces and that these display strong catalytic activity not observed in powders without Fe nanoparticles. Reduced surfaces were exposed to NH3, CO, and H2, volatiles that may be present on the surfaces of comet and volatile-rich asteroids. In the case of NH3 exposure, rapid decomposition was observed. When exposed to a mixture of CO and H2, significant coking of the mineral surfaces occurred. Analysis of the mineral grains after reaction indicated primarily the presence of graphene or graphitic carbon. The results demonstrate that strong chemical activity can be expected at powders that contain nanophase Fe particles. This suggests space-weathered mineral surfaces may play an important role in the synthesis and processing of organic species. This processing may be part of the weathering processes of volatile-rich but atmosphereless solar-system bodies

    Role Of Surface Chemistry In Grain Adhesion And Dissipation During Collisions Of Silica Nanograins

    No full text
    The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO2) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability of mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form

    Atomic-scale simulation of space weathering in olivine and orthopyroxene

    Get PDF
    Classical molecular dynamics was used to study the annealing of anion and cation Frenkel defects in olivine and orthopyroxene minerals. While it was found that for both minerals, reorganization of the Si-O bonds, often accompanied by large Si displacements, occurs to maintain the fourfold coordination of the SiO4 tetrahedra, important differences are observed in their annealing behavior. Specifically, cation defects are substantially more mobile in olivine than in orthopyroxene leading to rapid annihilation of cation Frenkel defects and formation of extended defects in olivine. By contrast, the diffusion rate of anion defects in orthopyroxene is much higher than that in olivine and also exhibits large anisotropy. Consequently, it was found that diffusion in orthopyroxene occurs without significant annihilation of anion Frenkel defects or trapping of anion interstitials or vacancies into clusters. The results obtained here are discussed in the context of space weathering of olivine and orthopyroxene. Specifically, two important observations are made which may explain previous experimental results. First, ion irradiation experiments that show reduced tolerance for radiation damage in orthopyroxene may be explained by the rapid, one-dimensional anion mobility which prevents healing of the lattice. Second, laser heating experiments which show that orthopyroxene has enhanced tolerance to reduction and the evolution of nanophase Fe inclusions could be due to the observed rapid anion diffusion in orthopyroxene, which might allow the bulk to act as a reservoir for the surface
    corecore