541 research outputs found

    MEMS-enabled silicon photonic integrated devices and circuits

    Get PDF
    Photonic integrated circuits have seen a dramatic increase in complexity over the past decades. This development has been spurred by recent applications in datacenter communications and enabled by the availability of standardized mature technology platforms. Mechanical movement of wave-guiding structures at the micro- and nanoscale provides unique opportunities to further enhance functionality and to reduce power consumption in photonic integrated circuits. We here demonstrate integration of MEMS-enabled components in a simplified silicon photonics process based on IMEC's Standard iSiPP50G Silicon Photonics Platform and a custom release process

    Photophysiological state of natural phytoplankton communities in the South China Sea and Sulu Sea

    Get PDF
    In recent years, an increasing number of studies on phytoplankton in the tropical South China Sea (SCS) and Sulu Sea (SS) have been conducted. However, still little is known about the photophysiological state of natural phytoplankton communities under varying environmental conditions. This study investigates the photophysiological state of natural phytoplankton communities in the southern SCS and SS based on high horizontal and vertical resolution field observations collected during the SHIVA (Stratosphere ozone: Halogens in a Varying Atmosphere) cruise (SO 218) in November 2011 on board RV Sonne. At the surface, pigment results revealed that total chlorophyll a (TChl a ) concentrations at all offshore stations were low at the surface and were generally dominated by cyanobacteria. Enhanced concentrations of TChl a were only observed below the upper mixed layer and above the euphotic depth with haptophytes, prochlorophytes and prasinophytes contributing most of the biomass. At stations close to the coast and river outflows, surface phytoplankton blooms (between 1 to 2.2 mg m−3) dominated by diatoms were observed. Overall, the study region exhibited strong nitrate + nitrite (NOx, 2 ÎŒmol L−1) were observed in conjunction with increased TChl a and diatoms concentrations. Surface NOx concentrations were observed to correlate positively with temperature (τ = 0.22, p 0.4

    Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions

    Get PDF
    Marine-produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethyl sulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at the ocean surface and in the atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of very short-lived substances (VSLS). We show that differences between prescribing emissions and prescribing concentrations (−28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air–sea transfer velocity (k) parameterizations, which was performed here for eight different parameterizations. The testing of these different k values is of special interest for DMS, as recently published parameterizations derived by direct flux measurements using eddy covariance measurements suggest decreasing k values at high wind speeds or a linear relationship with wind speed. Implementing these parameterizations reduces discrepancies in modelled DMS atmospheric mixing ratios and observations by a factor of 1.5 compared to parameterizations with a quadratic or cubic relationship to wind spee

    MEMS for Photonic Integrated Circuits

    Full text link
    The field of microelectromechanical Systems (MEMS) for photonic integrated circuits (PICs) is reviewed. This field leverages mechanics at the nanometer to micrometer scale to improve existing components and introduce novel functionalities in PICs. This review covers the MEMS actuation principles and the mechanical tuning mechanisms for integrated photonics. The state of the art of MEMS tunable components in PICs is quantitatively reviewed and critically assessed with respect to suitability for large-scale integration in existing PIC technology platforms. MEMS provide a powerful approach to overcome current limitations in PIC technologies and to enable a new design dimension with a wide range of applications

    Low-voltage silicon photonic MEMS switch with vertical actuation

    Get PDF
    We present a vertically movable silicon photonic MEMS switch realized in IMEC's standard silicon photonics platform followed by a dedicated postprocessing for MEMS release. The device has six optical ports, which enable four switching configurations with a safe electrical isolation of the switch's actuator. A low actuation voltage of 3.75 V is required to efficiently switch the optical signal from the drop port to the through port of the device. The device exhibits port extinctions of 16 dB and 26 dB at its OFF and ON states, respectively. With an insertion loss of 35 nm, this component paves the way for low-power scalable circuits in MEMS-enabled silicon photonics

    Coherent control of enrichment and conversion of molecular spin isomers

    Get PDF
    A theoretical model of nuclear spin conversion in molecules controlled by an external electromagnetic radiation resonant to rotational transition has been developed. It has been shown that one can produce an enrichment of spin isomers and influence their conversion rates in two ways, through coherences and through level population change induced by radiation. Influence of conversion is ranged from significant speed up to almost complete inhibition of the process by proper choice of frequency and intensity of the external field.Comment: REVTEX, 13 pages + 6 eps figure

    Silicon photonic MEMS add-drop filter

    Get PDF
    We demonstrate a compact add-drop filter based on a MEMS ring resonator implemented in IMEC's iSiPP50G silicon photonics platform. The device exhibits a port extinction of 20 dB and a port isolation of > 50 dB, upon actuation range of 0 V to 27 V

    Pion damping width from SU(2) x SU(2) NJL model

    Full text link
    Within the framework of the NJL model, we investigate the modification of the pion damping width in a hot pion gas for temperatures ranging from 0 to 180 MeV. The pion is found to broaden noticeably at T > 60 MeV. Near the chiral phase transition T ~ 180 MeV, the pion width is saturated and amounts to 70 MeV. The main contribution to the width comes from pion-pion collisions. Other contributions are found negligibly small.Comment: LaTeX2e, 13 pages, 2 figure

    Effects of mesonic correlations in the QCD phase transition

    Full text link
    The finite temperature phase transition of strongly interacting matter is studied within a nonlocal chiral quark model of the NJL type coupled to a Polyakov loop. In contrast to previous investigations which were restricted to the mean-field approximation, mesonic correlations are included by evaluating the quark-antiquark ring sum. For physical pion masses, we find that the pions dominate the pressure below the phase transition, whereas above T_c the pressure is well described by the mean-field approximation result. For large pion masses, as realized in lattice simulations, the meson effects are suppressed.Comment: 11 pages, 4 figures; version accepted for publication in Yad. Fiz., text extended, 1 figure adde
    • 

    corecore