82 research outputs found
The optimisation for local coupled extreme learning machine using differential evolution
Many strategies have been exploited for the task of reinforcing the effectiveness and efficiency of extreme learning machine (ELM), from both methodology and structure perspectives. By activating all the hidden nodes with different degrees, local coupled extreme learning machine (LC-ELM) is capable of decoupling the link architecture between the input layer and the hidden layer in ELM. Such activated degrees are jointly determined by the associated addresses and fuzzy membership functions assigned to the hidden nodes. In order to further refine the weight searching space of LC-ELM, this paper implements an optimisation, entitled evolutionary local coupled extreme learning machine (ELC-ELM). This method makes use of the differential evolutionary (DE) algorithm to optimise the hidden node addresses and the radiuses of the fuzzy membership functions, until the qualified fitness or the maximum iteration step is reached. The efficacy of the presented work is verified through systematic simulated experimentations in both regression and classification applications. Experimental results demonstrate that the proposed technique outperforms three ELM alternatives, namely, the classical ELM, LC-ELM, and OSFuzzyELM, according to a series of reliable performances
An extended Takagi–Sugeno–Kang inference system (TSK+) with fuzzy interpolation and its rule base generation
A rule base covering the entire input domain is required for the conventional Mamdani inference and Takagi-Sugeno-Kang (TSK) inference. Fuzzy interpolation enhances conventional fuzzy rule inference systems by allowing the use of sparse rule bases by which certain inputs are not covered. Given that almost all of the existing fuzzy interpolation approaches were developed to support the Mamdani inference, this paper presents a novel fuzzy interpolation approach that extends the TSK inference. This paper also proposes a data-driven rule base generation method to support the extended TSK inference system. The proposed system enhances the conventional TSK inference in two ways: 1) workable with incomplete or unevenly distributed data sets or incomplete expert knowledge that entails only a sparse rule base, and 2) simplifying complex fuzzy inference systems by using more compact rule bases for complex systems without the sacrificing of system performance. The experimentation shows that the proposed system overall outperforms the existing approaches with the utilisation of smaller rule bases
Fuzzy Interpolation Systems and Applications
Fuzzy inference systems provide a simple yet effective solution to complex non-linear problems, which have been applied to numerous real-world applications with great success. However, conventional fuzzy inference systems may suffer from either too sparse, too complex or imbalanced rule bases, given that the data may be unevenly distributed in the problem space regardless of its volume. Fuzzy interpolation addresses this. It enables fuzzy inferences with sparse rule bases when the sparse rule base does not cover a given input, and it simplifies very dense rule bases by approximating certain rules with their neighbouring ones. This chapter systematically reviews different types of fuzzy interpolation approaches and their variations, in terms of both the interpolation mechanism (inference engine) and sparse rule base generation. Representative applications of fuzzy interpolation in the field of control are also revisited in this chapter, which not only validate fuzzy interpolation approaches but also demonstrate its efficacy and potential for wider applications
Discussion on the Academic Guidance Strategy Based on the Students’ Personalities under the Undergraduate Tutor System
Undergraduate tutorial system is an educational mode being implemented by many universities in China. Under the tutorial system, there is a theoretical value and practical significance to explore the guiding strategy based on the personalities of college students.The authors give three guidance advises through the theoretical studies and the experiences of undergraduate tutors; The first is to establish a good teacher-student relationship, the second is to provide a speciality guidance based on the personalities and academic background, and the third is to guide the students’ personality cultivation . When the tutors apply and adjust the guidance strategy in the communication with the students, the students’ comprehensive qualities and abilities can be enhanced, and the tutors’ own scientific research and teaching level can be improved
Interval Type-2 TSK+ Fuzzy Inference System
Type-2 fuzzy sets and systems can better handle uncertainties compared to its type-1 counterpart, and the widely applied Mamdani and TSK fuzzy inference approaches have been both extended to support interval type-2 fuzzy sets. Fuzzy interpolation enhances the conventional Mamdani and TKS fuzzy inference systems, which not only enables inferences when inputs are not covered by an incomplete or sparse rule base but also helps in system simplification for very complex problems. This paper extends the recently proposed fuzzy interpolation approach TSK+ to allow the utilization of interval type-2 TSK fuzzy rule bases. One illustrative case based on an example problem from the literature demonstrates the working of the proposed system, and the application on the cart centering problem reveals the power of the proposed system. The experimental investigation confirmed that the proposed approach is able to perform fuzzy inferences using either dense or sparse interval type-2 TSK rule bases with promising results generated
Dynamic QoS Solution for Enterprise Networks Using TSK Fuzzy Interpolation
The Quality of Services (QoS) is the measure of data transmission quality and service availability of a network, aiming to maintain the data, especially delay-sensitive data such as VoIP, to be transmitted over the network with the required quality. Major network device manufacturers have each developed their own smart dynamic QoS solutions, such as AutoQoS supported by Cisco, CoS (Class of Service) by Netgear devices, and QoS Maps on SROS (Secure Router Operating System) provided by HP, to maintain the service level of network traffic. Such smart QoS solutions usually only work for manufacture qualified devices and otherwise only a pre-defined static policy mapping can be applied. This paper presents a dynamic QoS solution based on the differentiated services (DiffServ) approach for enterprise networks, which is able to modify the priority level of a packet in real time by adjusting the value of Differentiated Services Code Point (DSCP) in Internet Protocol (IP) header of network packets. This is implemented by a 0-order TSK fuzzy model with a sparse rule base which is developed by considering the current network delay, application desired priority level and user current priority group. DSCP values are dynamically generated by the TSK fuzzy model and updated in real time. The proposed system has been evaluated in a real network environment with promising results generated
Gaze-Informed egocentric action recognition for memory aid systems
Egocentric action recognition has been intensively studied in the fields of computer vision and clinical science with applications in pervasive health-care. The majority of the existing egocentric action recognition techniques utilize the features extracted from either the entire contents or the regions of interest in video frames as the inputs of action classifiers. The former might suffer from moving backgrounds or irrelevant foregrounds usually associated with egocentric action videos, while the latter may be impaired by the mismatch between the calculated and the ground truth regions of interest. This paper proposes a new gaze-informed feature extraction approach, by which the features are extracted from the regions around the gaze points and thus representing the genuine regions of interest from a first person of view. The activity of daily life can then be classified based only on the identified regions using the extracted gaze-informed features. The proposed approach has been further applied to a memory support system for people with poor memory, such as those with Amnesia or dementia, and their carers. The experimental results demonstrate the efficacy of the proposed approach in egocentric action recognition and thus the potential of the memory support tool in health care
A Self-adaptive Discriminative Autoencoder for Medical Applications
Computer aided diagnosis (CAD) systems play an essential role in the early detection and diagnosis of developing disease for medical applications. In order to obtain the highly recognizable representation for the medical images, a self-adaptive discriminative autoencoder (SADAE) is proposed in this paper. The proposed SADAE system is implemented under a deep metric learning framework which consists of K local autoencoders, employed to learn the K subspaces that represent the diverse distribution of the underlying data, and a global autoencoder to restrict the spatial scale of the learned representation of images. Such community of autoencoders is aided by a self-adaptive metric learning method that extracts the discriminative features to recognize the different categories in the given images. The quality of the extracted features by SADAE is compared against that of those extracted by other state-of-the-art deep learning and metric learning methods on five popular medical image data sets. The experimental results demonstrate that the medical image recognition results gained by SADAE are much improved over those by the alternatives
- …