1,029 research outputs found
Microstructured superhydrorepellent surfaces: Effect of drop pressure on fakir-state stability and apparent contact angles
In this paper we present a generalized Cassi-Baxter equation to take into
account the effect of drop pressure on the apparent contact angle theta_{app}.
Also we determine the limiting pressure p_{W} which causes the impalement
transition to the Wenzel state and the pull-off pressure p_{out} at which the
drop detaches from the substrate. The calculations have been carried out for
axial-symmetric pillars of three different shapes: conical, hemispherical
topped and flat topped cylindrical pillars. Calculations show that, assuming
the same pillar spacing, conical pillars may be more incline to undergo an
impalement transition to the Wenzel state, but, on the other hand, they are
characterized by a vanishing pull-off pressure which causes the drop not to
adhere to the substrate and therefore to detach very easily. We infer that this
property should strongly reduce the contact angle hysteresis as experimentally
osberved in Ref. \cite{Martines-Conical-Shape}. It is possible to combine large
resistance to impalement transition (i.e. large value of p_{W}) and small (or
even vanishing) detaching pressure p_{out} by employing cylindrical pillars
with conical tips. We also show that depending on the particular pillar
geometry, the effect of drop pressure on the apparent contact angle theta_{app}
may be more or less significant. In particular we show that in case of conical
pillars increasing the drop pressure causes a significant decrease of
theta_{app} in agreement with some experimental investigations
\cite{LafunaTransitio}, whereas theta_{app} slightly increases for
hemispherical or flat topped cylindrical pillars.Comment: 21 pages, 13 figure
A Calibrated Time Domain Envelope Measurement System for the Behavioral Modeling of Power Amplifiers
This paper presents a set-up which enables the generation and the calibrated time domain measurements of complex envelopes of modulated signals at both ports of non linear microwave power amplifiers. The architecture of the characterization tool is given. Examples of error corrected time domain envelopes at the input / output RF ports of a 36 dBm output power â 30dB power gain L-band SSPA are shown. Futhermore, the use of this characterization tool and a suitable processing of measurement data are applied to a novel measurement based behavioral modeling approach of non linear devices accounting for memory effects
Drop impact upon micro- and nanostructured superhydrophobic surfaces
We experimentally investigate drop impact dynamics onto different
superhydrophobic surfaces, consisting of regular polymeric micropatterns and
rough carbon nanofibers, with similar static contact angles. The main control
parameters are the Weber number \We and the roughness of the surface. At small
\We, i.e. small impact velocity, the impact evolutions are similar for both
types of substrates, exhibiting Fakir state, complete bouncing, partial
rebouncing, trapping of an air bubble, jetting, and sticky vibrating water
balls. At large \We, splashing impacts emerge forming several satellite
droplets, which are more pronounced for the multiscale rough carbon nanofiber
jungles. The results imply that the multiscale surface roughness at nanoscale
plays a minor role in the impact events for small \We \apprle 120 but an
important one for large \We \apprge 120. Finally, we find the effect of
ambient air pressure to be negligible in the explored parameter regime \We
\apprle 150Comment: 8 pages, 7 figure
Mechanical tuning of the evaporation rate of liquid on crossed fibers
We investigate experimentally the drying of a small volume of perfectly
wetting liquid on two crossed fibers. We characterize the drying dynamics for
the three liquid morphologies that are encountered in this geometry: drop,
column and a mixed morphology, in which a drop and a column coexist. For each
morphology, we rationalize our findings with theoretical models that capture
the drying kinetics. We find that the evaporation rate depends significantly on
the liquid morphology and that the drying of liquid column is faster than the
evaporation of the drop and the mixed morphology for a given liquid volume.
Finally, we illustrate that shearing a network of fibers reduces the angle
between them, changes the morphology towards the column state, and so enhances
the drying rate of a volatile liquid deposited on it
Hydrodynamic theory of de-wetting
A prototypical problem in the study of wetting phenomena is that of a solid
plunging into or being withdrawn from a liquid bath. In the latter, de-wetting
case, a critical speed exists above which a stationary contact line is no
longer sustainable and a liquid film is being deposited on the solid.
Demonstrating this behavior to be a hydrodynamic instability close to the
contact line, we provide the first theoretical explanation of a classical
prediction due to Derjaguin and Levi: instability occurs when the outer, static
meniscus approaches the shape corresponding to a perfectly wetting fluid
Shapes, contact angles, and line tensions of droplets on cylinders
Using an interface displacement model we calculate the shapes of
nanometer-size liquid droplets on homogeneous cylindrical surfaces. We
determine effective contact angles and line tensions, the latter defined as
excess free energies per unit length associated with the two contact lines at
the ends of the droplet. The dependences of these quantities on the cylinder
radius and on the volume of the droplets are analyzed.Comment: 26 pages, RevTeX, 10 Figure
Dynamics of Femtosecond Laser Interactions with Dielectrics
review article written in common (LBNL+CEA)Femtosecond laser pulses appear as an emerging and promising tool for processing wide band-gap dielectric materials for a variety of applications. This article aims to provide an overview of recent progress in understanding the fundamental physics of femtosecond laser interactions with dielectrics that may have the potential for innovative materials applications. The focus of the overview is the dynamics of femtosecond laser-excited carriers and the propagation of femtosecond laser pulses inside dielectric materials
Making a splash with water repellency
A 'splash' is usually heard when a solid body enters water at large velocity.
This phenomena originates from the formation of an air cavity resulting from
the complex transient dynamics of the free interface during the impact. The
classical picture of impacts on free surfaces relies solely on fluid inertia,
arguing that surface properties and viscous effects are negligible at
sufficiently large velocities. In strong contrast to this large-scale
hydrodynamic viewpoint, we demonstrate in this study that the wettability of
the impacting body is a key factor in determining the degree of splashing. This
unexpected result is illustrated in Fig.1: a large cavity is evident for an
impacting hydrophobic sphere (1.b), contrasting with the hydrophilic sphere's
impact under the very same conditions (1.a). This unforeseen fact is
furthermore embodied in the dependence of the threshold velocity for air
entrainment on the contact angle of the impacting body, as well as on the ratio
between the surface tension and fluid viscosity, thereby defining a critical
capillary velocity. As a paradigm, we show that superhydrophobic impacters make
a big 'splash' for any impact velocity. This novel understanding provides a new
perspective for impacts on free surfaces, and reveals that modifications of the
detailed nature of the surface -- involving physico-chemical aspects at the
nanometric scales -- provide an efficient and versatile strategy for
controlling the water entry of solid bodies at high velocity.Comment: accepted for publication in Nature Physic
Warning signs for stabilizing global CO2 emissions
Carbon dioxide (CO2) emissions from fossil fuels and industry comprise ~90% of all CO2 emissions from human activities. For the last three years, such emissions were stable, despite continuing growth in the global economy. Many positive trends contributed to this unique hiatus, including reduced coal use in China and elsewhere, continuing gains in energy efficiency, and a boom in low-carbon renewables such as wind and solar. However, the temporary hiatus appears to have ended in 2017. For 2017, we project emissions growth of 2.0% (range: 0.8%â3.0%) from 2016 levels (leap-year adjusted), reaching a record 36.8â±â2 Gt CO2. Economic projections suggest further emissions growth in 2018 is likely. Time is running out on our ability to keep global average temperature increases below 2 °C and, even more immediately, anything close to 1.5â°C
- âŠ