76 research outputs found

    MicroRNA-1224 Inhibits Tumor Metastasis in Intestinal-Type Gastric Cancer by Directly Targeting FAK

    Get PDF
    Intestinal-type gastric cancer (GC) of the Lauren classification system has specific epidemiological characteristics and carcinogenesis patterns. MicroRNAs (miRNAs) have prognostic significance, and some can be used as prognostic biomarkers in GC. In this study, we identified miR-1224 as a potential survival-related miRNA in intestinal-type GC patients by The Cancer Genome Atlas (TCGA) analysis. Using quantitative real-time PCR (qRT-PCR), we showed that the relative expression of miR-1224 was significantly decreased in intestinal-type GC tissues compared to matched adjacent normal mucosa tissues (p < 0.01). We found that high miR-1224 expression was associated with no lymph-node metastasis (p < 0.05) and good prognosis (p = 0.028) in 90 intestinal-type GC tissues. Transfection of intestinal-type GC cells with miR-1224 mimics showed that miR-1224 suppressed cell migration in vitro (wound healing assay and Transwell migration assay), whereas the transfection of cells with miR-1224 inhibitor promoted cell migration in vitro. miR-1224 also suppressed intestinal-type GC cell metastasis in a xenograft mouse model. Furthermore, bioinformatics, luciferase reporter, Western blotting, and immunohistochemistry (IHC) studies demonstrated that miR-1224 directly bound to the focal adhesion kinase (FAK) gene, and downregulated its expression, which decreased STAT3 and NF-κB signaling and subsequent the epithelial-to-mesenchymal transition (EMT). Repression of FAK is required for the miR-1224-mediated inhibition of cell migration in intestinal-type GC. The present study demonstrated that miR-1224 is downregulated in intestinal-type GC. miR-1224 inhibits the metastasis of intestinal-type GC by suppressing FAK-mediated activation of the STAT3 and NF-κB pathways, and subsequent EMT. miR-1224 could represent an important prognostic factor in intestinal-type GC

    RANKL/RANK promotes the migration of gastric cancer cells by interacting with EGFR

    Get PDF
    BACKGROUND: The incidence and mortality rates of gastric cancer (GC) rank in top five among all malignant tumors. Chemokines and their receptor-signaling pathways reportedly play key roles in the metastasis of malignant tumor cells. Receptor activator of nuclear factor κB ligand (RANKL) is a member of the tumor necrosis factor family, with strong chemokine-like effects. Some studies have pointed out that the RANKL/RANK pathway is vital for the metastasis of cancer cells, but the specific mechanisms in GC remain poorly understood. RESULTS: This study reports original findings in cell culture models and in patients with GC. Flow cytometry and western blotting analyses showed that RANK was expressed in BGC-823 and SGC-7901 cells in particular. Chemotaxis experiments and wound healing assay suggested that RANKL spurred the migration of GC cells. This effect was offset by osteoprotegerin (OPG), a decoy receptor for RANKL. RANKL contributed to the activation of human epidermal growth factor receptor (HER) family pathways. The lipid raft core protein, caveolin 1 (Cav-1), interacted with both RANK and human epidermal growth factor receptor-1(EGFR). Knockdown of Cav-1 blocked the activation of EGFR and cell migration induced by RANKL. Moreover, RANK-positive GC patients who displayed higher levels of EGFR expression had poor overall survival. CONCLUSIONS: In summary, we confirmed that with the promotion of RANKL, RANK and EGFR can form complexes with the lipid raft core protein Cav-1, which together promote GC cell migration. The formation of the RANK-Cav-1-EGFR complex provides a novel mechanism for the metastasis of GC. These observations warrant confirmation in independent studies, in vitro and in vivo. They also inform future drug target discovery research and innovation in the treatment of GC progression

    β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-Elemene, a compound found in an herb used in traditional Chinese medicine, has shown promising anti-cancer effects against a broad spectrum of tumors. The mechanism by which β-elemene kills cells remains unclear. The aim of the present study is to investigate the anti-tumor effect of β-elemene on human gastric cancer cells and the molecular mechanism involved.</p> <p>Results</p> <p>β-Elemene inhibited the viability of human gastric cancer MGC803 and SGC7901 cells in a dose-dependent manner. The suppression of cell viability was due to the induction of apoptosis. A robust autophagy was observed in the cells treated with β-elemene; it was characterized by the increase of punctate LC3 dots, the cellular morphology, and the increased levels of LC3-II protein. Further study showed that β-elemene treatment up-regulated Atg5-Atg12 conjugated protein but had little effect on other autophagy-related proteins. PI3K/Akt/mTOR/p70S6K1 activity was inhibited by β-elemene. Knockdown of Beclin 1 with small interfering RNA, or co-treatment with the autophagy inhibitor, 3-methyladenine or chlorochine enhanced significantly the antitumor effects of β-elemene.</p> <p>Conclusions</p> <p>Our data provides the first evidence that β-elemene induces protective autophagy and prevents human gastric cancer cells from undergoing apoptosis. A combination of β-elemene with autophagy inhibitor might thus be a useful therapeutic option for advanced gastric cancer.</p

    Elevated limb-bud and heart development (LBH) expression indicates poor prognosis and promotes gastric cancer cell proliferation and invasion via upregulating Integrin/FAK/Akt pathway

    Get PDF
    The limb-bud and heart development (LBH) gene is a highly conserved, tissue-specific transcription cofactor in vertebrates that regulates multiple key genes in embryonic development. The role of LBH in various cancer types is still controversial, and its specific role and molecular mechanism in the oncogenesis of gastric cancer (GC) remains largely unexplored. In the present study, the prognostic significance and clinicopathological characteristics of LBH in GC was determined. The LBH mRNA expression was first investigated in four independent public datasets (TCGA-STAD, GSE15459, GSE29272, and GSE62254) and then validated with our samples at the protein level. LBH was overexpressed at both the mRNA and protein levels in cancer compared with normal tissues. High LBH expression was correlated with advanced T, N, and M stages. Kaplan–Meier analysis and log-rank test indicated that higher LBH expression was statistically correlated with shorter overall survival (OS) in the public datasets and our study samples. Univariate and multivariate Cox regression analysis showed that LBH was an independent prognostic biomarker for survival in TCGA-STAD, GSE15459, GSE62254 cohorts, and our GC patients. In vitro experiments showed that knockdown of LBH can significantly inhibit the proliferation and invasion of HGC-27 cells, while overexpression of LBH can significantly enhance the proliferation and invasion of BGC-823 cells. Gene Set Enrichment Analysis (GSEA), Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) indicated that high LBH expression is associated with the PI3K-Akt pathway, focal adhesion, and extracellular matrix (ECM)-receptor interaction. Western blot analysis showed that knockdown of LBH significantly inhibited the expression of integrin α5, integrin β1, p-FAK, and p-Akt. Therefore, results from the present study indicate that LBH is a potential independent prognostic biomarker and promotes proliferation and invasion of GC cells by activating the integrin/FAK/Akt pathway

    EEG Emotion Recognition Based on Temporal and Spatial Features of Sensitive signals

    No full text
    Currently, there are some problems in the electrocorticogram (EEG) emotion recognition research, such as single feature, redundant signal, which make it impossible to achieve high-precision recognition accuracy when used a few channel signals. To solve the abovementioned problems, the authors proposed a method for emotion recognition based on long short-term memory (LSTM) neural network and convolutional neural network (CNN) combined with neurophysiological knowledge. First, the authors selected emotion-sensitive signals based on the physiological function of EEG regions and the active scenario of the band signals, and then merged temporal and spatial features extracted from sensitive signals by LSTM and CNN. Finally, merged features were classified to recognize emotion. The method was experimented on the DEAP dataset, the average accuracy in the valence and arousal dimensions were 92.87% and 93.23%, respectively. Compared with similar studies, it not only improved the recognition accuracy, but also greatly reduced the calculation channel, which proved the superiority of the method

    Spatial and Temporal Distribution Characteristics of Water Requirements for Maize in Inner Mongolia from 1959 to 2018

    No full text
    Crop water requirements are crucial for agricultural water management and redistribution. Based on meteorological and agricultural observation data, the effective precipitation (Pe), water requirements (ETc), and irrigation water requirements (Ir) in the maize growing areas of Inner Mongolia were calculated. Furthermore, climatic trends of these variables were analysed to reveal their temporal and spatial distributions. The research results are as follows: the average Pe of maize in Inner Mongolia during the entire growth period was 125.9 mm, with an increasing trend from west to east. The Pe in the middle growth period of maize was the highest and was small in the early and late growth stages. The Pe climate exhibited a negative slope with a decreasing trend. The average ETc of maize during the entire growth period was 480.6 mm. The high-value areas are mainly distributed in the Wulatzhongqi and Linhe areas. The average Ir of maize during the entire growth period was 402.9 mm, and the spatial distribution is similar to that of ETc. In each growth period, Ir showed an increasing trend. Supplemental irrigation should be added appropriately during each growth period to ensure the normal growth of maize. This study can provide an effective basis for the optimisation of irrigation and regional water conservation in the maize cultivation area of Inner Mongolia

    Cbl-b Enhances Sensitivity to 5-Fluorouracil via EGFR- and Mitochondria-Mediated Pathways in Gastric Cancer Cells

    Get PDF
    5-Fluorouracil (5-FU) is an essential component of anticancer chemotherapy against gastric cancer. However, the response rate of single drug is still limited. The ubiquitin ligase Cbl-b is a negative regulator of growth factor receptor signaling and is involved in the suppression of cancer cell proliferation. However, whether Cbl-b could affect 5-FU sensitivity remains unclear. The present study showed that Cbl-b knockdown caused higher proliferation concomitant with the decrease of apoptosis induced by 5-FU treatment in gastric cancer cell. Further mechanism investigation demonstrated that Cbl-b knockdown caused significant increase of phosphorylation of EGFR, ERK and Akt, decrease of mitochondrial membrane potential, and increase of expression ratio of Bcl-2/Bax. These results suggest that Cbl-b enhances sensitivity to 5-FU via EGFR- and mitochondria-mediated pathways in gastric cancer cells

    Effect of DPYD

    No full text
    corecore