3 research outputs found

    Effects of Fluorine-Based Modification on Triboelectric Properties of Cellulose

    No full text
    The hydroxyl groups on the cellulose macromolecular chain cause the cellulose surface to have strong reactivity. In this study, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PDOTES) was used to modify cellulose to improve its triboelectric properties, and a triboelectric nanogenerator (TENG) was assembled. The introduction of fluorine groups reduced the surface potential of cellulose and turned it into a negative phase, which enhanced the ability to capture electrons. The electrical properties increased by 30% compared with unmodified cellulose. According to the principles of TENGs, a self-powered human-wearable device was designed using PDOTES-paper, which could detect movements of the human body, such as walking and running, and facilitated a practical method for the preparation of efficient wearable sensors

    Effects of Fluorine-Based Modification on Triboelectric Properties of Cellulose

    No full text
    The hydroxyl groups on the cellulose macromolecular chain cause the cellulose surface to have strong reactivity. In this study, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PDOTES) was used to modify cellulose to improve its triboelectric properties, and a triboelectric nanogenerator (TENG) was assembled. The introduction of fluorine groups reduced the surface potential of cellulose and turned it into a negative phase, which enhanced the ability to capture electrons. The electrical properties increased by 30% compared with unmodified cellulose. According to the principles of TENGs, a self-powered human-wearable device was designed using PDOTES-paper, which could detect movements of the human body, such as walking and running, and facilitated a practical method for the preparation of efficient wearable sensors
    corecore