37 research outputs found

    Detection of Mercury Ion with High Sensitivity and Selectivity Using a DNA/Graphene Oxide Hybrid Immobilized on Glass Slides

    No full text
    Excessive mercury ions (Hg2+) cause great pollution to soil/water and pose a major threat to human health. The high sensitivity and high selectivity in the Hg2+ detection demonstrated herein are significant for the research areas of analytical chemistry, chemical biology, physical chemistry, drug discovery, and clinical diagnosis. In this study, a series of simple, low-cost, and highly sensitive biochips based on a graphene oxide (GO)/DNA hybrid was developed. Hg2+ is detected with high sensitivity and selectivity by GO/DNA hybrid biochips immobilized on glass slides. The performance of the biosensors can be improved by introducing more phosphorothioate sites and complementary bases. The best limit of detection of the biochips is 0.38 nM with selectivity of over 10:1. This sensor was also used for Hg2+ detection in Dendrobium. The results show this biochip is promising for Hg2+ detection

    The Effect of Rhenium Content on Microstructural Changes and Irradiated Hardening in W-Re Alloy under High-Dose Ion Irradiation

    No full text
    An amount of 100 dpa Si2+ irradiation was used to study the effect of transmutation rhenium content on irradiated microscopic defects and hardening in W-xRe (x = 0, 1, 3, 5 and 10 wt.%) alloys at 550 °C. The increase in Re content could significantly refine the grain in the W-xRe alloys, and no obvious surface topography change could be found after high-dose irradiation via the scanning electron microscope (SEM). The micro defects induced by high-dose irradiation in W and W-3Re alloys were observed using a transmission electron microscope (TEM). Dislocation loops with a size larger than 10 nm could be found in both W and W-3Re alloy, but the distribution of them was different. The distribution of the dislocation loops was more uniform in pure W, while they seemed to be clustered around some locations in W-3Re alloy. Voids (~2.4 nm) were observed in W-3Re alloy, while no void was investigated in W. High-dose irradiation induced obvious hardening with the hardening rate between 75% and 155% in all W-xRe alloys, but W-3Re alloy had the lowest hardening rate (75%). The main reasons might be related to the smallest grain size in W-3Re alloy, which suppressed the formation of defect clusters and induced smaller hardening than that in other samples

    <i>Lactobacillus crispatus</i> CCFM1339 Inhibits Vaginal Epithelial Barrier Injury Induced by <i>Gardnerella vaginalis</i> in Mice

    No full text
    The vaginal epithelial barrier, which integrates mechanical, immune, chemical, and microbial defenses, is pivotal in safeguarding against external pathogens and upholding the vaginal microecological equilibrium. Although the widely used metronidazole effectively curtails Gardnerella vaginalis, a key pathogen in bacterial vaginosis, it falls short in restoring the vaginal barrier or reducing recurrence rates. Our prior research highlighted Lactobacillus crispatus CCFM1339, a vaginally derived Lactobacillus strain, for its capacity to modulate the vaginal epithelial barrier. In cellular models, L. crispatus CCFM1339 fortified the integrity of the cellular monolayer, augmented cellular migration, and facilitated repair. Remarkably, in animal models, L. crispatus CCFM1339 substantially abated the secretion of the barrier disruption biomarker E-cadherin (from 101.45 to 82.90 pg/mL) and increased the anti-inflammatory cytokine IL-10 (35.18% vs. the model), consequently mitigating vaginal inflammation in mice. Immunological assays in vaginal tissues elucidated increased secretory IgA levels (from 405.56 to 740.62 ng/mL) and curtailed IL-17 gene expression. Moreover, L. crispatus CCFM1339 enhanced Lactobacilli abundance and attenuated Enterobacterium and Enterococcus within the vaginal microbiome, underscoring its potential in probiotic applications for vaginal barrier regulation

    The Effect of Rhenium Content on Microstructural Changes and Irradiated Hardening in W-Re Alloy under High-Dose Ion Irradiation

    No full text
    An amount of 100 dpa Si2+ irradiation was used to study the effect of transmutation rhenium content on irradiated microscopic defects and hardening in W-xRe (x = 0, 1, 3, 5 and 10 wt.%) alloys at 550 °C. The increase in Re content could significantly refine the grain in the W-xRe alloys, and no obvious surface topography change could be found after high-dose irradiation via the scanning electron microscope (SEM). The micro defects induced by high-dose irradiation in W and W-3Re alloys were observed using a transmission electron microscope (TEM). Dislocation loops with a size larger than 10 nm could be found in both W and W-3Re alloy, but the distribution of them was different. The distribution of the dislocation loops was more uniform in pure W, while they seemed to be clustered around some locations in W-3Re alloy. Voids (~2.4 nm) were observed in W-3Re alloy, while no void was investigated in W. High-dose irradiation induced obvious hardening with the hardening rate between 75% and 155% in all W-xRe alloys, but W-3Re alloy had the lowest hardening rate (75%). The main reasons might be related to the smallest grain size in W-3Re alloy, which suppressed the formation of defect clusters and induced smaller hardening than that in other samples

    Preparation and characterization of protein-loaded polyanhydride microspheres

    No full text
    Abstract Poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride) (P(CPP-SA)) have the anhydride bonds in copolymer backbone, which are available for degradation on the base of passive hydrolysis. This chemical structure made it degraded within a short time in linear degradation rate. For this property, polyanhydrides are one of the most suitable biodegradable polymers employed as drug carriers. This paper aimed at researching the erosion and degradation of P(CPP-SA) microspheres with CPP/SA monomer ratios of 20:80, 35:65 and 50:50. In vitro protein release from the microspheres was also investigated in this paper. Human serum albumin (HSA) was used as the model protein. In this research, the microspheres degradation and drug release rate from microspheres can be adjusted by altering the CPP/SA ratios of P(CPP-SA). The features of surface erosion were observed in SEM. The structural integrity of HSA extracted from microspheres was detected by gel permeation chromatography, compared with native HSA. The results showed HSA remained its molecule weight after encapsulated

    Feasibility of an Individualized mHealth Nutrition (iNutrition) Intervention for Post-Discharged Gastric Cancer Patients Following Gastrectomy: A Randomized Controlled Pilot Trial

    No full text
    (1) Background: A major challenge for post-discharged gastric cancer patients following gastrectomy is the impact of the anatomy change on decreased oral intake, nutritional status, and, ultimately, quality of life. The purpose of this study is to examine the feasibility and preliminary effects of an individualized mHealth nutrition (iNutrition) intervention in post-discharged gastric cancer patients following gastrectomy. (2) Methods: A mixed-method feasibility study with a parallel randomized controlled design was conducted. Patients were randomly assigned to either the iNutrition intervention group (n = 12) or the control group (n = 12). Participants completed measures at baseline (T0), four (T1), and twelve weeks (T2) post-randomization. (3) Results: Recruitment (33%) and retention (87.5%) rates along with high adherence and acceptability supported the feasibility of the iNutrition intervention for post-discharged gastric cancer patients following gastrectomy, echoed by the qualitative findings. The iNutrition intervention significantly improved participants’ nutritional behavior (p = 0.005), energy intake (p = 0.038), compliance with energy requirements (p = 0.006), and compliance with protein requirements (p = 0.008). (4) Conclusions: The iNutrition intervention is feasible and potentially benefits post-discharged gastric cancer patients following gastrectomy. A larger trial is required to establish the efficacy of this approach. Trial Registration: 19 October 2022 Chinese Clinical Trial Registry, ChiCTR2200064807

    Achieving Efficient Light‐Emitting Diodes by Controlling Phase Distribution of Quasi‐2D Perovskites

    No full text
    Abstract Quasi‐2D perovskite light‐emitting diodes (PeLEDs) are promising candidates to realize superior luminescent. However, the poorly controlled phase distribution and surface defects hinder the improvement of the device's performance. Here, by introducing rubidium bromide (RbBr) to tune the crystallization kinetics of quasi‐2D perovskites, more uniform phase distribution is achieved through the suppression of medium‐n phases, resulting in narrower emission spectrum and more efficient energy transfer. Meanwhile, the defects are effectively passivated by the addition of RbBr. As a result, the photoluminescence quantum yield (PLQY) of quasi‐2D perovskite films increases significantly from 45.6% to 81.3%, and the maximum external quantum efficiency (EQE) of PeLEDs reaches 18.92%. This finding provides a new insight into the phase distribution control of quasi‐2D perovskites and the further improvement of PeLEDs

    Association between testosterone and serum soluble Îą-klotho in U.S. males: a cross-sectional study

    No full text
    Abstract Purpose Testosterone plays a crucial role in males, and the deficiency of testosterone leads to multiple adverse health conditions. Klotho is a recently discovered protein encoded by antiaging gene klotho. Both the levels of testosterone and klotho change with aging, so the relationship between them is worth exploring. The purpose of this study was to investigate whether total testosterone is associated with serum klotho levels in U.S. males aged 40–79 years. Methods Included in this study were 3750 male participants from the 2011 to 2016 National Health and Nutrition Examination Survey, aged 40–79 years with included information on klotho and sex hormones. The sex steroid hormone levels and klotho concentrations were assayed in laboratories using the recommended methods according to Nutrition Examination Survey guidelines. The association between sex hormones and klotho was calculated using multivariate linear regression models after adjustment for several possible confounding variables. Results Among the 3750 participants, the total testosterone concentration was 399.048 ± 184.780 ng/dL, and the testosterone deficiency prevalence was 1160 (30.942%). The geometric mean of serum klotho levels was 791.000 pg/mL. In the adjusted models, klotho increased 0.165 pg/mL for every 1 ng/dL increase of total testosterone (p = 0.004). In addition, estradiol (β 2.232; 95% CI 0.588–3.876; p = 0.032) and sex hormone-binding globulin (β 2.013; 95% CI 1.173–2.583; p = 0.002) were also positively associated with klotho concentrations. Conclusion This study reported a significant association between klotho and sex hormones in the U.S. male population. The levels of klotho in men increased with total testosterone, estradiol and sex hormone-binding globulin levels, which may have implications for future research and clinical practice
    corecore