48 research outputs found

    Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery

    Get PDF
    Phosphorus is a promising anode material for sodium batteries with a theoretical capacity of 2596 mA h g-1. However, phosphorus has a low electrical conductivity of 1 x 10-14 S cm-1, which results in poor cycling and rate performances. Even if it is alloyed with conductive Fe, it still delivers a poor electrochemical performance. In this article, a FeP/graphite composite has been synthesized using a simple, cheap, and productive method of low energy ball-milling, which is an efficient way to improve the electrical conductivity of the FeP compound. The cycling performance was improved significantly, and when the current density increased to 500 mA g-1, the FeP/graphite composite could still deliver 134 mA h g-1, which was more than twice the capacity of the FeP compound alone. Our results suggest that by using a low-energy ball-milling method, a promising FeP/graphite anode material can be synthesized for the sodium battery

    Ferroptosis: emerging roles in lung cancer and potential implications in biological compounds

    Get PDF
    Lung cancer has high metastasis and drug resistance. The prognosis of lung cancer patients is poor and the patients’ survival chances are easily neglected. Ferroptosis is a programmed cell death proposed in 2012, which differs from apoptosis, necrosis and autophagy. Ferroptosis is a novel type of regulated cell death which is driven by iron-dependent lipid peroxidation and subsequent plasma membrane ruptures. It has broad prospects in the field of tumor disease treatment. At present, multiple studies have shown that biological compounds can induce ferroptosis in lung cancer cells, which exhibits significant anti-cancer effects, and they have the advantages in high safety, minimal side effects, and less possibility to drug resistance. In this review, we summarize the biological compounds used for the treatment of lung cancer by focusing on ferroptosis and its mechanism. In addition, we systematically review the current research status of combining nanotechnology with biological compounds for tumor treatment, shed new light for targeting ferroptosis pathways and applying biological compounds-based therapies

    Intermetallic Interactions In A Series Of Multinuclear Late First-Row And Coinage Metal Complexes Supported By Pyridyldiimine-Derived Macrocyclic Ligands

    No full text
    The design of novel ligands that support multiple metal centers in close proximity to one another has gained increased attention in the past decade as a method of creating molecular models of heterogeneous surfaces and enzyme active sites. To this end, two multidentate macrocyclic ligands were developed. The ligands incorporated either two redox-active 1,1\u27-(4-(tert-butyl)pyridine-2,6-diyl)bis(ethan-1-imine) (PDI) or two redox-active (4-(tert-butyl)pyridine-2,6-diyl)dimethanimine (PDAI) moieties, linked through catenated chains of three CH2 groups that connect the imino nitrogen atoms. These structural elements provide both electronic and geometric flexibility to the multimetallic cores held by the ligands. In the first part of this dissertation, the study of the electronic flexibility of the ligands will be described. A series of bimetallic Fe, Co, and Ni complexes that span five cluster-electron counts (34 to 38 e– per cluster) supported by the PDI- and PDAI- derived macrocyclic ligands were synthesized and characterized. It was found that 1) the metal–metal bond order in the bimetallic core is tuned by adjusting the number of cluster electrons, and 2) the ligand oxidation state is tuned by a combination of an adjustment in the number of cluster electrons and an adjustment in the energy gap between metal d-manifolds and ligand π* orbitals. In the second part of this dissertation, a study of the geometric flexibility of the PDAI-derived ligand will be described, using a series of novel multinuclear Ag and Cu complexes. The ligand was shown to accommodate multimetallic coinage metal clusters that exhibit weak metallophilic interactions within cluster cores that range in nuclearity from 1 to 3. The geometric flexibility of the ligand allowed for 1) higher solution-phase symmetry than what is observed in the solid state for many of these complexes and 2) the atom-precise interconversion between [Cu2] and [Cu3] complexes. The work included in this dissertation demonstrates the electronic and geometric flexibility of these pyridyldiimine-derived macrocyclic ligands, and lays the fundamental knowledge for further studies on multimetallic complexes supported by these ligands

    Kinematic Evidence of Root-to-Shoot Signaling for the Coding of Support Thickness in Pea Plants

    Get PDF
    Plants such as climbers characterized by stems or tendrils need to find a potential support (e.g., pole, stick, other plants or trees) to reach greater light exposure. Since the time when Darwin carried out research on climbing plants, several studies on plants’ searching and attachment behaviors have demonstrated their unique ability to process some features of a support to modulate their movements accordingly. Nevertheless, the strategies underlying this ability have yet to be uncovered. The present research tries to fill this gap by investigating how the interaction between above- (i.e., stems, tendrils, …) and below-ground (i.e., the root system) plant organs influences the kinematics of their approach-to-grasp movements. Using three-dimensional (3D) kinematic analysis, we characterized the movements of pea plants (Pisum sativum L.) as they leaned towards supports whose below- and above-ground parts were characterized by different thicknesses (i.e., thin below- thick above-ground, or the opposite). As a control condition, the plants were placed next to supports with the same thickness below and above ground (i.e., either entirely thin or thick). The results suggest that the information regarding below- and above-ground parts of a support appears to be integrated and modulates the reach-to-grasp behavior of the plant. Information about the support conveyed by the root system seems to be particularly important to achieve the end-goal of movement

    Cracking the code: a comparative approach to plant communication

    No full text
    The linguistic behavior of humans is usually considered the point of reference for studying the origin and evolution of language. As commonly defined, language is a form of communication between human beings; many have argued that it is unique to humans as there is no apparent equivalent for it in non-human organisms. How language is used as a means of communication is examined in this essay from a biological perspective positing that it is effectively and meaningfully used by non-human organisms and, more specifically, by plants. We set out to draw parallels between some aspects characterizing human language and the chemical communication that occurs between plants. The essay examines the similarities in ways of communicating linked to three properties of language: its combinatorial structure, meaning-making activities and the existence of dialects. In accordance with the findings of researchers who have demonstrated that plants do indeed communicate with one another and with organisms in their environment, the essay concludes with the appeal for an interdisciplinary approach conceptualizing a broader ecological definition of language and a constructive dialogue between the biological sciences and the humanities

    Cobalt phosphide as a new anode material for sodium storage

    No full text
    A novel anode material for sodium ion batteries - nanosized CoP particles - was synthesized by a facile and productive ball-milling method. The CoP was tested as an anode candidate for sodium ion batteries. It delivered a high initial specific capacity of 770 mAh g-1, and excellent rate capability, demonstrating that CoP is a promising anode candidate for sodium ion storage. Ex-situ X-ray photoelectron spectroscopy and scanning transmission electron microscopy were carried out to investigate the sodium storage mechanism of CoP

    Recent progress on alloy-based anode materials for potassium-ion batteries

    No full text
    Potassium-ion batteries (PIBs) are considered as promising alternatives to lithium-ion batteries due to the abundant potassium resources in the Earth’s crust. Establishing high-performance anode materials for PIBs is essential to the development of PIBs. Recently, significant research effort has been devoted to developing novel anode materials for PIBs. Alloy-based anode materials that undergo alloying reactions and feature combined conversion and alloying reactions are attractive candidates due to their high theoretical capacities. In this review, the current understanding of the mechanisms of alloy-based anode materials for PIBs is presented. The modification strategies and recent research progress of alloy-based anodes and their composites for potassium storage are summarized and discussed. The corresponding challenges and future perspectives of these materials are also proposed

    The grasping side of pea plants: a matter of learning?

    No full text
    At first glance, plants seem relatively immobile, stuck to the ground in rigid structures, but movement pervades all aspects of plant behavior. Here, we address the main question of whether such movements are “goal-directed” and, if so, how such capacity is acquired. To this end, we shall present two kinematical studies on pea plants searching for and grasping a potential support in the environment. We characterized the growth movement of pea plant from the germination of the seed to the grasping of the support by means of three-dimensional (3D) kinematical analysis. In one study we demonstrate the ability of pea plants to process the intrinsic features of a support (e.g., thickness) and to modulate their approaching and grasping behaviour accordingly. In another study, we explore how this process is eventually ‘learned’ during growth. The results suggest that the information acquired by the plant at a certain growth stage is communicated to the following stage. A process that continues until the plant has acquired all the necessary information to successfully grasp the support. This mechanism is suggestive of a motor learning process based on the transmission of practice-related information across growth stages. Results are discussed in the light of available theories put forward to explain how plants sense the environment and adapt their growth to the task at hand

    C-MYC-activated lncRNA SNHG20 accelerates the proliferation of diffuse large B cell lymphoma via USP14-mediated deubiquitination of β-catenin

    No full text
    Abstract Background Long noncoding RNAs (lncRNAs) are implicated in the initiation and progression of diffuse large B-cell lymphoma (DLBCL). Small nucleolar RNA host gene 20 (SNHG20) has been recognized as a critical lncRNA in multiple human cancers. However, the role of SNHG20 and its underlying mechanism in DLBCL are still unclear. Methods The expression levels of SNHG20, c-MYC, β-catenin, and ubiquitin-specific peptidase 14 (USP14) were measured by reverse transcription-quantitative polymerase chain reaction (RT‒qPCR) and immunoblotting. Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2′-deoxyuridine (EdU) incorporation, and flow cytometry assays were used to assess the proliferation and apoptosis of DLBCL cells. The transcriptional regulation of SNHG20 by c-MYC was confirmed by a luciferase reporter assay and RNA immunoprecipitation. The interaction between USP14 and β-catenin was demonstrated using coimmunoprecipitation. A subcutaneous xenograft model was constructed to determine the role of SNHG20 in vivo. Results In the present study, we found that SNHG20 expression was upregulated in DLBCL cell lines and tissues compared to their normal counterparts. SNHG20 knockdown prominently reduced the proliferation and induced the apoptosis of U2932 and OCI-LY3 cells. However, SNHG20 overexpression increased the proliferation and apoptosis resistance of DLBCL cells. Mechanistically, the expression of SNHG20 was positively regulated by c-MYC in DLBCL cells. C-MYC directly bound to the promoter of SNHG20 to activate its transcription. SNHG20 was expressed mainly in the cytosol in DLBCL cells. SNHG20 silencing did not impact USP14 expression but markedly decreased the level of β-catenin, the substrate of USP14, in DLBCL cells. USP14 overexpression increased the β-catenin level, and this increase was attenuated by SNHG20 knockdown. Treatment with the proteasome inhibitor MG132 abolished SNHG20 knockdown-induced β-catenin downregulation. Moreover, SNHG20 silencing reduced the half-life but increased the ubiquitination of β-catenin in DLBCL cells. SNHG20 knockdown weakened the interaction between both endogenous and exogenous USP14 and β-catenin. In turn, SNHG20 overexpression increased the c-MYC level, and this increase was attenuated by β-catenin knockdown. Importantly, β-catenin knockdown attenuated the SNHG20-mediated increase in DLBCL cell proliferation in vitro and tumour growth in vivo. Conclusions Taken together, our results suggested that c-MYC-activated SNHG20 accelerated the proliferation and increased the apoptosis resistance of DLBCL cells via USP14-mediated deubiquitination of β-catenin. The c-MYC/SNHG20 positive feedback loop may be a new target for anti-DLBCL treatment
    corecore