2,262 research outputs found

    A full Bayesian partition model for identifying hypo- and hyper-methylated loci from single nucleotide resolution sequencing data

    Get PDF
    Publisher's PDFBACKGROUND: DNA methylation is an epigenetic modification that plays important roles on gene regulation. Study of whole-genome bisulfite sequencing and reduced representation bisulfite sequencing brings the availability of DNA methylation at single CpG resolution. The main interest of study on DNA methylation data is to test the methylation difference under two conditions of biological samples. However, the high cost and complexity of this sequencing experiment limits the number of biological replicates, which brings challenges to the development of statistical methods. RESULTS: Bayesian modeling is well known to be able to borrow strength across the genome, and hence is a powerful tool for high-dimensional- low-sample- size data. In order to provide accurate identification of methylation loci, especially for low coverage data, we propose a full Bayesian partition model to detect differentially methylated loci under two conditions of scientific study. Since hypo-methylation and hyper-methylation have distinct biological implication, it is desirable to differentiate these two types of differential methylation. The advantage of our Bayesian model is that it can produce one-step output of each locus being either equal-, hypo- or hyper-methylated locus without further post-hoc analysis. An R package named as MethyBayes implementing the proposed full Bayesian partition model will be submitted to the bioconductor website upon publication of the manuscript. CONCLUSIONS: The proposed full Bayesian partition model outperforms existing methods in terms of power while maintaining a low false discovery rate based on simulation studies and real data analysis including bioinformatics analysis.University of Delaware. Department of Applied Economics and Statistics

    Explanation by a putative triester-like mechanism for the thio effects and Mn2+ rescues in reactions catalyzed by a hammerhead ribozyme

    Get PDF
    AbstractDivalent metal ion-dependent hammerhead ribozymes can cleave any RNA with a NUX triplet, wherein the N can be any residue and X can be C, U or A. In recent literature on the mechanism of action of hammerhead ribozymes, one important role of divalent metal ions is generally suggested to be an electrophilic catalyst by directly coordinating with the pro-Rp oxygen of the scissile phosphate to stabilize the transition state. This proposal was made on the basis of thio effects and the proposed electrophilic catalyst is very attractive as an explanation for the catalytic activity of metalloenzymes. Reexamination of thio effects with substrates having a GUA triplet at the cleavage site shows that, in agreement with the previous finding, the cleavage rate, in the presence of Mg2+ ions, is significantly reduced in the case of the phosphorothioate substrate (RpS), wherein the pro-Rp oxygen at the scissile phosphate is replaced by sulfur, while the cleavage rate is reduced to a much lesser extent for the other isomer (SpS), wherein the pro-Sp oxygen at the scissile phosphate is replaced by sulfur. However, more careful examination of the rescue ability of Mn2+ ions with these isomers demonstrates that more thiophilic Mn2+ ions rescue the reaction not only with the RpS isomer but also with the SpS isomer and, importantly, to a greater extent for the SpS isomer. These results argue against the previous conclusion that a metal ion is directly coordinating with the pro-Rp oxygen of the scissile phosphate to stabilize the transition state. In this paper we try to elucidate the possible origin of the thio effects and propose a `triester-like' mechanism in reactions catalyzed by hammerhead ribozymes

    Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced glycation products (AGEs), as endogenous inflammatory mediator, compromise the physiological function of mesenchymal stem cells (MSCs). MSCs have a potential role in cell replacement therapy in acute myocardial infarction and ischemic cardiomyopathy. However, mechanisms of AGEs on MSCs are still not unveiled.</p> <p>Methods</p> <p>Reactive oxygen species (ROS), genes regulation, cell proliferation and migration have been detected by AGE-BSA stimulated MSCs.</p> <p>Results</p> <p>We found that <it>in vitro </it>stimulation with AGE-BSA induced generation of reactive oxygen species (ROS), and inhibited dose-dependently proliferation and migration of MSCs. Microarray and molecular biological assessment displayed an increased expression and secretion of Ccl2, Ccl3, Ccl4 and Il1b in a dose- and time-dependent manner. These chemokines/cytokines of equivalent concentration to those in conditioned medium exerted an inhibitory effect on MSC proliferation and migration after stimulation for 24 h. Transient elevation of phospho-p38 in MSCs upon AGE-BSA stimulation was blocked with p38 inhibitor.</p> <p>Conclusions</p> <p>The study indicates that AGE-BSA induces production of chemokines/cytokines in a dose- and time-dependent manner via activation of ROS-p38 mediated pathway. These chemokines/cytokines exert an inhibitory effect on MSC growth and migration, suggesting an amplified dysfunction of MSCs by AGEs.</p
    • …
    corecore