4,484 research outputs found

    Error microphone location study for an eight-channel ANC system in free space

    Full text link
    Β© 25th International Congress on Sound and Vibration 2018, ICSV 2018: Hiroshima Calling. All rights reserved. The location of error microphones is one key factor that determines the performance of a multichannel active noise control (ANC) system in terms of global sound power reduction when the number and the location of secondary sources are fixed. In a single channel ANC system, the optimal error microphone location is on a line that is nearly perpendicular to the secondary and primary source axis and closer to the secondary source. This paper investigates the optimal location of the error microphones in an 8-channel ANC system in free space. It is demonstrated that good noise reduction performance can be achieved by placing the error microphones between the primary source and secondary sources and closer to the secondary sources in the low frequency range. Experiments conducted on a gearbox for low frequency noise control show that the averaged sound level reduction at the observation locations 2 meters away is 5.2 dB when the error microphones are placed at 0.2 m inside the secondary source surface

    Modular immune-homeostatic microparticles promote immune tolerance in mouse autoimmune models

    Full text link
    The therapeutic goal for autoimmune diseases is disease antigen-specific immune tolerance without nonspecific immune suppression. However, it is a challenge to induce antigen-specific immune tolerance in a dysregulated immune system. In this study, we developed immune-homeostatic microparticles (IHMs) that treat multiple mouse models of autoimmunity via induction of apoptosis in activated T cells and reestablishment of regulatory T cells. Specifically, in an experimental model of colitis, IHMs rapidly released monocyte chemotactic protein-1 after intravenous administration, which recruited activated T cells and then induced their apoptosis by conjugated Fas ligand on the IHM surface. This triggered professional macrophages to ingest apoptotic T cells and produce high quantities of transforming growth factor-Ξ², which drove regulatory T cell differentiation. Furthermore, the modular design of IHMs allowed IHMs to be engineered with the autoantigen peptides that can reduce disease in an experimental autoimmune encephalomyelitis mouse model and a nonobese diabetic mouse model. This was accomplished by sustained release of the autoantigens after induction of T cell apoptosis and transforming growth factor-Ξ² production by macrophages, which promoted to establish an immune tolerant environment. Thus, IHMs may be an efficient therapeutic strategy for autoimmune diseases through induction of apoptosis and reestablishment of tolerant immune responses

    Robust nodal superconductivity induced by isovalent doping in Ba(Fe1βˆ’x_{1-x}Rux_x)2_2As2_2 and BaFe2_2(As1βˆ’x_{1-x}Px_x)2_2

    Full text link
    We present the ultra-low-temperature heat transport study of iron-based superconductors Ba(Fe1βˆ’x_{1-x}Rux_x)2_2As2_2 and BaFe2_2(As1βˆ’x_{1-x}Px_x)2_2. For optimally doped Ba(Fe0.64_{0.64}Ru0.36_{0.36})2_2As2_2, a large residual linear term ΞΊ0/T\kappa_0/T at zero field and a H\sqrt{H} dependence of ΞΊ0(H)/T\kappa_0(H)/T are observed, which provide strong evidences for nodes in the superconducting gap. This result demonstrates that the isovalent Ru doping can also induce nodal superconductivity, as P does in BaFe2_2(As0.67_{0.67}P0.33_{0.33})2_2. Furthermore, in underdoped Ba(Fe0.77_{0.77}Ru0.23_{0.23})2_2As2_2 and heavily underdoped BaFe2_2(As0.82_{0.82}P0.18_{0.18})2_2, ΞΊ0/T\kappa_0/T manifests similar nodal behavior, which shows the robustness of nodal superconductivity in the underdoped regime and puts constraint on theoretical models.Comment: 5 pages, 4 figures - with two underdoped samples added, this paper supersedes arXiv:1106.541

    Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles

    Full text link
    The systemic biodistribution of endogenous extracellular vesicles is central to the maintenance of tissue homeostasis. Here, we show that angiogenesis and heart function in infarcted heart tissue can be ameliorated by the local accumulation of exosomes collected from circulation using magnetic nanoparticles. The nanoparticles consist of a Fe3O4 core and a silica shell that is decorated with poly (ethylene glycol) conjugated through hydrazone bonds to two types of antibody, which bind either to CD63 antigens on the surface of extracellular vesicles or to myosin-light-chain surface markers on injured cardiomyocytes. On application of a local magnetic field, accumulation of the nanoparticles and cleavage of the hydrazone bonds under the acidic pH of injured cardiac tissue lead to the local release of the captured exosomes. In rabbit and rat models of myocardial infarction, the magnetic-guided accumulation of captured CD63-expressing exosomes in infarcted tissue led to reductions in infarct size as well as improved left-ventricle ejection fraction and angiogenesis. The approach could be used to manipulate endogenous exosome biodistribution for the treatment of other diseases

    Spin-Fluctuation-Induced Non-Fermi-Liquid Behavior with suppressed superconductivity in LiFe1βˆ’x_{1-x}Cox_{x}As

    Full text link
    A series of LiFe1βˆ’x_{1-x}Cox_{x}As compounds with different Co concentrations have been studied by transport, optical spectroscopy, angle-resolved photoemission spectroscopy and nuclear magnetic resonance. We observed a Fermi liquid to non-Fermi liquid to Fermi liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we found that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe1βˆ’x_{1-x}Cox_{x}As is induced by low-energy spin fluctuations which are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFe1βˆ’x_{1-x}Cox_{x}As where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.Comment: 10 pages, 11 figure
    • …
    corecore