4,782 research outputs found

    Quantum spin liquid states in the two dimensional kagome antiferromagnets, ZnxCu4-x(OD)6Cl2

    Full text link
    A three-dimensional system of interacting spins typically develops static long-range order when it is cooled. If the spins are quantum (S = 1/2), however, novel quantum paramagnetic states may appear. The most highly sought state among them is the resonating valence bond (RVB) state in which every pair of neighboring quantum spins form entangled spin singlets (valence bonds) and the singlets are quantum mechanically resonating amongst all the possible highly degenerate pairing states. Here we provide experimental evidence for such quantum paramagnetic states existing in frustrated antiferromagnets, ZnxCu4-x(OD)6Cl2, where the S = 1/2 magnetic Cu2+ moments form layers of a two-dimensional kagome lattice. We find that in Cu4(OD)6Cl2, where distorted kagome planes are weakly coupled to each other, a dispersionless excitation mode appears in the magnetic excitation spectrum below ~ 20 K, whose characteristics resemble those of quantum spin singlets in a solid state, known as a valence bond solid (VBS), that breaks translational symmetry. Doping nonmagnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens the interplane coupling but also dilutes the magnetic occupancy of the kagome lattice. The VBS state is suppressed and for ZnCu3(OD)6Cl2 where the kagome planes are undistorted and 90% occupied by the Cu2+ ions, the low energy spin fluctuations in the spin liquid phase become featureless

    Tensor Regression with Applications in Neuroimaging Data Analysis

    Get PDF
    Classical regression methods treat covariates as a vector and estimate a corresponding vector of regression coefficients. Modern applications in medical imaging generate covariates of more complex form such as multidimensional arrays (tensors). Traditional statistical and computational methods are proving insufficient for analysis of these high-throughput data due to their ultrahigh dimensionality as well as complex structure. In this article, we propose a new family of tensor regression models that efficiently exploit the special structure of tensor covariates. Under this framework, ultrahigh dimensionality is reduced to a manageable level, resulting in efficient estimation and prediction. A fast and highly scalable estimation algorithm is proposed for maximum likelihood estimation and its associated asymptotic properties are studied. Effectiveness of the new methods is demonstrated on both synthetic and real MRI imaging data.Comment: 27 pages, 4 figure

    Massive triplet excitations in a magnetized anisotropic Haldane spin chain

    Full text link
    Inelastic neutron scattering experiments on the Haldane-gap quantum antiferromagnet \nd are performed at mK temperatures in magnetic fields of almost twice the critical field HcH_c applied perpendicular to the spin cahins. Above HcH_c a re-opening of the spin gap is clearly observed. In the high-field N\'eel-ordered state the spectrum is dominated by three distinct long-lived excitation branches. Several field-theoretical models are tested in a quantitative comparison with the experimental data.Comment: 4 pages, 3 figure

    The states of W-class as shared resources for perfect teleportation and superdense coding

    Get PDF
    As we know, the states of triqubit systems have two important classes: GHZ-class and W-class. In this paper, the states of W-class are considered for teleportation and superdense coding, and are generalized to multi-particle systems. First we describe two transformations of the shared resources for teleportation and superdense coding, which allow many new protocols from some known ones for that. As an application of these transformations, we obtain a sufficient and necessary condition for a state of W-class being suitable for perfect teleportation and superdense coding. As another application, we find that state ∣W>123=1/2(∣100>123+∣010>123+2∣001>123)|W>_{123}={1/2}(|100>_{123}+|010>_{123}+\sqrt{2}|001>_{123}) can be used to transmit three classical bits by sending two qubits, which was considered to be impossible by P. Agrawal and A. Pati [Phys. Rev. A to be published]. We generalize the states of W-class to multi-qubit systems and multi-particle systems with higher dimension. We propose two protocols for teleportation and superdense coding by using W-states of multi-qubit systems that generalize the protocols by using ∣W>123|W>_{123} proposed by P. Agrawal and A. Pati. We obtain an optimal way to partition some W-states of multi-qubit systems into two subsystems, such that the entanglement between them achieves maximum value.Comment: 10 pages, critical comments and suggestions are welcom

    Fabrication of a Highly Sensitive Chemical Sensor Based on ZnO Nanorod Arrays

    Get PDF
    We report a novel method for fabricating a highly sensitive chemical sensor based on a ZnO nanorod array that is epitaxially grown on a Pt-coated Si substrate, with a top–top electrode configuration. To practically test the device, its O2 and NO2 sensing properties were investigated. The gas sensing properties of this type of device suggest that the approach is promising for the fabrication of sensitive and reliable nanorod chemical sensors

    Pressure effects on the electron-doped high Tc superconductor BaFe(2-x)Co(x)As(2)

    Full text link
    Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.Comment: 5 figure

    Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Full text link
    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GWth_{\textrm{th}} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239^{239}Pu fission fractions, F239F_{239}, from 0.25 to 0.35, Daya Bay measures an average IBD yield, σˉf\bar{\sigma}_f, of (5.90±0.13)×10−43(5.90 \pm 0.13) \times 10^{-43} cm2^2/fission and a fuel-dependent variation in the IBD yield, dσf/dF239d\sigma_f/dF_{239}, of (−1.86±0.18)×10−43(-1.86 \pm 0.18) \times 10^{-43} cm2^2/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield was found to be energy-dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ\sigma. This discrepancy indicates that an overall deficit in measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235^{235}U, 239^{239}Pu, 238^{238}U, and 241^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17)(6.17 \pm 0.17) and (4.27±0.26)×10−43(4.27 \pm 0.26) \times 10^{-43} cm2^2/fission have been determined for the two dominant fission parent isotopes 235^{235}U and 239^{239}Pu. A 7.8% discrepancy between the observed and predicted 235^{235}U yield suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.Comment: 7 pages, 5 figure

    Measurement of ψ(2S)\psi(2S) decays to baryon pairs

    Full text link
    A sample of 3.95M ψ(2S)\psi(2S) decays registered in the BES detector are used to study final states containing pairs of octet and decuplet baryons. We report branching fractions for ψ(2S)→ppˉ\psi(2S)\to p\bar{p}, ΛΛˉ\Lambda\bar{\Lambda}, ÎŁ0Σˉ0\Sigma^0\bar{\Sigma}{}^0, Ξ−Ξˉ+\Xi^-\bar{\Xi}{}^+, Δ++Δˉ−−\Delta^{++}\bar{\Delta}{}^{--}, ÎŁ+(1385)Σˉ−(1385)\Sigma^+(1385)\bar{\Sigma}{}^-(1385), Ξ0(1530)Ξˉ0(1530)\Xi^0(1530)\bar{\Xi}{}^0(1530), and Ω−Ωˉ+\Omega^-\bar{\Omega}{}^+. These results are compared to expectations based on the SU(3)-flavor symmetry, factorization, and perturbative QCD.Comment: 22 pages, 21 figures, 4 table
    • 

    corecore