157 research outputs found
Adversarial Multi-task Learning for Text Classification
Neural network models have shown their promising opportunities for multi-task
learning, which focus on learning the shared layers to extract the common and
task-invariant features. However, in most existing approaches, the extracted
shared features are prone to be contaminated by task-specific features or the
noise brought by other tasks. In this paper, we propose an adversarial
multi-task learning framework, alleviating the shared and private latent
feature spaces from interfering with each other. We conduct extensive
experiments on 16 different text classification tasks, which demonstrates the
benefits of our approach. Besides, we show that the shared knowledge learned by
our proposed model can be regarded as off-the-shelf knowledge and easily
transferred to new tasks. The datasets of all 16 tasks are publicly available
at \url{http://nlp.fudan.edu.cn/data/}Comment: Accepted by ACL201
Dynamic Compositional Neural Networks over Tree Structure
Tree-structured neural networks have proven to be effective in learning
semantic representations by exploiting syntactic information. In spite of their
success, most existing models suffer from the underfitting problem: they
recursively use the same shared compositional function throughout the whole
compositional process and lack expressive power due to inability to capture the
richness of compositionality. In this paper, we address this issue by
introducing the dynamic compositional neural networks over tree structure
(DC-TreeNN), in which the compositional function is dynamically generated by a
meta network. The role of meta-network is to capture the metaknowledge across
the different compositional rules and formulate them. Experimental results on
two typical tasks show the effectiveness of the proposed models.Comment: Accepted by IJCAI 201
- …