4 research outputs found

    MMA-Net: Multiple Morphology-Aware Network for Automated Cobb Angle Measurement

    Full text link
    Scoliosis diagnosis and assessment depend largely on the measurement of the Cobb angle in spine X-ray images. With the emergence of deep learning techniques that employ landmark detection, tilt prediction, and spine segmentation, automated Cobb angle measurement has become increasingly popular. However, these methods encounter difficulties such as high noise sensitivity, intricate computational procedures, and exclusive reliance on a single type of morphological information. In this paper, we introduce the Multiple Morphology-Aware Network (MMA-Net), a novel framework that improves Cobb angle measurement accuracy by integrating multiple spine morphology as attention information. In the MMA-Net, we first feed spine X-ray images into the segmentation network to produce multiple morphological information (spine region, centerline, and boundary) and then concatenate the original X-ray image with the resulting segmentation maps as input for the regression module to perform precise Cobb angle measurement. Furthermore, we devise joint loss functions for our segmentation and regression network training, respectively. We evaluate our method on the AASCE challenge dataset and achieve superior performance with the SMAPE of 7.28% and the MAE of 3.18{\deg}, indicating a strong competitiveness compared to other outstanding methods. Consequently, we can offer clinicians automated, efficient, and reliable Cobb angle measurement

    Policies, applications, barriers and future trends of building information modeling technology for building sustainability and informatization in China

    No full text
    The application of building information modeling (BIM) technology has effectively supported the high-quality development of building sustainability and informatization in China. However, few studies comprehensively analyzed the enacted policies, prevalent applications, and existing barriers of the latest application and development of BIM technology in building industry from building sustainability and informatization perspectives to provide effective consultation and guidelines for its rational scale application in China. This paper firstly made a statistical analysis on the policies and standards of BIM technology issued from 2011 to 2021 in China. Moreover, the latest application, development and existing issues of BIM technology in building sustainability and informatization were also comprehensively discussed and analyzed. The main conclusions indicated that the application status of BIM technology for building sustainability and informatization in China was large in quantity, wide in scope, but low in level. The existing issue and limitation in terms of BIM application in China was mainly due to the lack of standards and domestic-oriented tools. Finally, the future outlook and recommendations of BIM technology for building sustainability and informatization in China were also presented as avenues for upcoming research.Design & Construction Managemen

    Mechanical Property of Long Glass Fiber Reinforced Polypropylene Composite: From Material to Car Seat Frame and Bumper Beam

    No full text
    Long Fiber Reinforced Thermoplastic (LFT) is a lightweight, high-strength, and easy-to-recycle new vehicle composite material, and has good mechanical properties, heat resistance, and weather resistance, which has found increasing application in automobile industry. It is of importance to understand the relationship between micro phase, macro-mechanical properties and the structural performance of automobile components. This article evaluates the performance of LFT from the level of material to automobile components. The mechanical properties of LFT were numerically and theoretically predicted to provide instruction for the next material choice. Two typical structural components, namely, car seat frame and bumper beam, were selected to evaluate the performance of LGF/PP compared with other competing materials in terms of mechanical properties and cost. In the case of the same volume, the seat frame of 40% LECT/PP composite material is lighter and cheaper, which is conducive to energy saving and emission reduction. It was shown that the 40% LECT/PA66 car bumper beam had a higher energy absorption ratio, lighter weight, higher specific energy absorption, and advantageous material cost. LFT is a promising candidate for existing automobile components with its performance fulfilling the requirements

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore