11 research outputs found

    Preserving Flake Size in an African Flake Graphite Ore Beneficiation Using a Modified Grinding and Pre-Screening Process

    No full text
    As the high value and the scarcity of large-flake graphite ore resources, it is in the best interest to maximize the amount of large flakes and minimize any processing that will reduce flake sizes. In the study, the mineralogy of an African graphite ore was estimated using X-ray diffraction (XRD), X-ray fluorescence (XRF), and optical microscope analyses. The results indicated that it was a heavily weathered large flake graphite ore and the main gangue minerals were quartz and kaolinite. The graphite flakes were thick, bent, and fractured, and some clay minerals were embedded into the graphite interlayer, which made it difficult to prevent the large flakes from being destroyed using mechanical grinding methods. An approach of steel rod coarse grinding and pebble regrinding effectively reduced the destruction of graphite flakes and improved the grinding efficiency. In addition, comparing with the conventional process, a pre-screening process was applied and the content of large flakes in the final concentrate was significantly improved

    Specific Cation Effect on the Flotation of Graphite

    No full text
    Inorganic electrolytes are assumed to significantly impact the flotation performance of graphite resources; however, the underlying mechanism is still unclear. In this work, the effect of three inorganic salts, including KCl, MgCl2, and AlCl3, was studied on the flotation of graphite. Flotation results indicated significantly increased graphite recovery with the addition of KCl regardless of pulp pH. MgCl2 improved the flotation performance under acidic and slightly alkaline conditions, while AlCl3 had a better activation on graphite flotation under strong acidic and alkaline conditions. Contact angle and Zeta potential results confirmed that electrolytes substantially reduced the absolute value of surface charge and the hydration of graphite surface, thus improving the hydrophobicity. Froth stability studies indicated that multivalent Al3+ and Mg2+ ions exhibit superior foaming performance than K+ ions and contribute to more stable and abundant foam. Additionally, these salt ions increased the surface tension and prevented bubble coalescence, contributing to nanobubble formation. Therefore, adding MgCl2 and KCl is of great significance for improved graphite flotation under neutral conditions

    Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review

    No full text
    Supercapacitors (SCs) have generated a great deal of interest regarding their prospects for application in energy storage due to their advantages such as long life cycles and high-power density. Graphene is an excellent electrode material for SCs due to its high electric conductivity and highly specific surface area. Conductive polymers (CPs) could potentially become the next-generation SC electrodes because of their low cost, facile synthesis methods, and high pseudocapacitance. Graphene/CP composites show conspicuous electrochemical performance when used as electrode materials for SCs. In this article, we present and summarize the synthesis and electrochemical performance of graphene/CP composites for SCs. Additionally, the method for synthesizing electrode materials for better electrochemical performance is discussed

    Specific Cation Effect on the Flotation of Graphite

    No full text
    Inorganic electrolytes are assumed to significantly impact the flotation performance of graphite resources; however, the underlying mechanism is still unclear. In this work, the effect of three inorganic salts, including KCl, MgCl2, and AlCl3, was studied on the flotation of graphite. Flotation results indicated significantly increased graphite recovery with the addition of KCl regardless of pulp pH. MgCl2 improved the flotation performance under acidic and slightly alkaline conditions, while AlCl3 had a better activation on graphite flotation under strong acidic and alkaline conditions. Contact angle and Zeta potential results confirmed that electrolytes substantially reduced the absolute value of surface charge and the hydration of graphite surface, thus improving the hydrophobicity. Froth stability studies indicated that multivalent Al3+ and Mg2+ ions exhibit superior foaming performance than K+ ions and contribute to more stable and abundant foam. Additionally, these salt ions increased the surface tension and prevented bubble coalescence, contributing to nanobubble formation. Therefore, adding MgCl2 and KCl is of great significance for improved graphite flotation under neutral conditions

    An Investigation of Reverse Flotation Separation of Sericite from Graphite by Using a Surfactant: MF

    No full text
    In this paper, a surfactant, atlox4862 (formaldehyde condensate of methyl naphthalene sulfonic sodium salt) (MF), was introduced as a depressant for reverse flotation separation of sericite from graphite. Natural flake graphite has a strong hydrophobic property. After interacting with MF, the graphite became moderately hydrophilic. The flotation results showed that MF had a depressing ability for both sericite and graphite and that the flotation separation of sericite from graphite was attributed to the different declining levels of recovery between graphite and sericite with increased MF concentration. For a pulp pH of 8 and a MF concentration of 250 mg/L, the recovery rates of sericite and graphite were 89.7% and 11.3%, respectively. The results of the FTIR spectra and zeta potential measurements demonstrated that the interaction of MF with graphite and sericite is mainly through electrostatic attraction. MF was preferred to adsorb on the surface of graphite, decreasing its zeta potential and improving its hydrophilicity more than that of sericite

    Increasing the Fine Flaky Graphite Recovery in Flotation via a Combined MultipleTreatments Technique of Middlings

    No full text
    As the residual flaky graphite ores become miscellaneous and fine, a single treatment technique for the middlings from the flotation process of graphite ore cannot efficiently recover the valuable graphite in the multistage grinding-flotation technology. In the study, the existence form of graphite and relationship of graphite with the associated gangue minerals were estimated by optical microscope analysis. The results indicated that the fine flaky graphite particles embedded with gangue minerals like a honeycomb, making it difficult to be beneficiated using the typical flotation technique. A combination technique of individual process and concentrated returning for the treatment of middlings was used to increase the graphite recovery based on the co-existing relationship between graphite and gangue minerals in the middlings. The graphite recovery of the final concentrate upgraded from 51.81% to 91.14% at a fixed carbon (FC) content of 92.01% by a beneficiation process consisted of once coarse (94.41% passing 74 μm) and rougher, five stages regrinding and six stages cleaning. The proposed treatment technique for middlings is of great significance to increase the recovery of fine flaky graphite

    Reducing entrainment of sericite in fine flaky graphite flotation using polyalurninum chloride

    No full text
    Polyaluminum chloride (PACl) was introduced as a flocculant to reduce the entrainment of sericite gangue in fine flaky graphite flotation. The dispersion and aggregation behaviours of sericite and fine flaky graphite in the absence and presence of PACl were studied by settling experiments and verified by optical microscope images. Results of batch flotation tests for artificial mixtures indicated that the addition of PACl decreased the recovery of sericite gangue and the water recovery. Zeta potential measurements, FTIR and XPS analyses revealed that PACl selectively aggregated sericite particles in terms of charge neutralization and precipitate enmeshment

    Selective flotation of witherite from calcite using potassium chromate as a depressant

    No full text
    Witherite has been widely used as an industrial and environmental source of barium, with calcite being the primary associated carbonate mineral. However, few studies have been conducted to effectively concentrate witherite from barium ores. In this work, with the treatment of potassium chromate (K2CrO4) and sodium oleate (NaOL), witherite was selectively separated from calcite through selective flotation at different pH conditions. In addition, contact angle, Zeta potential, adsorption and X-ray photoelectron spectroscopy measurements were performed to characterize the separation mechanisms. The results demonstrated that NaOL had a strong collecting ability for both witherite and calcite; nevertheless, witherite could be effectively selected from calcite with the highest recovery at pH 9 in the presence of K2CrO4. From the XPS measurements, NaOL and K2CrO4 were found to be primarily attached to the surfaces of witherite and calcite through chemisorption. The presence of K2CrO4 on the surface of calcite adversely influenced the NaOL adsorption, which could make the flotation separation efficient and successful

    Understanding the collection behavior of gangue minerals in fine flake graphite flotation

    No full text
    Flotation is one of the most common and effective methods for the beneficiation of natural graphite resources. However, the upgrading efficiency of flotation is always finite due to the undesirable collection of gangue minerals. In this work, the collecting mechanism of three typical gangue minerals, including mica, quartz, and feldspar, in fine flake graphite flotation was investigated. Results of batch flotation tests for single-minerals and artificial mixtures confirmed the enhanced collection of gangues in the presence of graphite particles. Contact angle and zeta potential results and theoretical calculations of the interaction between graphite and gangue particles based on typical DLVO theory indicated that it is impossible to collect gangue minerals by true flotation or through heterocoagulation with graphite particles. The fitting results of accumulated gangue recoveries and accumulated water recoveries using the Warren method demonstrated that most gangue minerals entered the concentrate through entrainment, with a small proportion by bubble inclusions

    Understanding the Entrainment Behavior of Gangue Minerals in Flake Graphite Flotation

    No full text
    Flotation is one of the most used methods to upgrade natural graphite resources. However, the efficiency is usually decreased due to the entrainment of undesirable fine gangue minerals. In this work, the impact of different factors such as particle size, pulp density, and flotation reagent on the entrainment of mica and quartz in a flake graphite flotation was studied. The single gangue mineral flotation results showed increased gangue entrainment when reducing the particle size of gangue minerals and increasing the pulp density. Moreover, the flotation of artificial mixtures indicated enhanced entrainment of mica and quartz in the presence of graphite particles. The collector and frother also strongly affect gangue entrainment by modifying the structure and stability of the froth. Kerosene, which has a prominent deforming feature, can reduce gangue entrainment more effectively than diesel
    corecore