5 research outputs found
Phosphate glass fibers facilitate proliferation and osteogenesis through Runx2 transcription in murine osteoblastic cells
Cell-material interactions and compatibility are important aspects of bioactive materials for bone tissue engineering. Phosphate glass fiber (PGF) is an attractive inorganic filler with fibrous structure and tunable composition, which has been widely investigated as a bioactive filler for bone repair applications. However, the interaction of osteoblasts with PGFs has not been widely investigated to elucidate the osteogenic mechanism of PGFs. In this study, different concentrations of short PGFs with interlaced oriented topography were co-cultured with MC3T3-E1 cells for different periods, and the synergistic effects of fiber topography and ionic product of PGFs on osteoblast responses including cell adhesion, spreading, proliferation and osteogenic differentiation were investigated. It was found that osteoblasts were more prone to adhere on PGFs through vinculin protein, leading to enhanced cell proliferation with polygonal cell shape and spreading cellular actin filaments. In addition, osteoblasts incubated on PGF meshes showed enhanced alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and increased expression of osteogenesis-related marker genes, which could be attributed to the Wnt/β-catenin/Runx2 signaling pathway. This study elucidated the possible mechanism of PGF on triggering specific osteoblast behavior, which would be highly beneficial for designing PGF-based bone graft substitutes with excellent osteogenic functions
Mesenchymal MACF1 Facilitates SMAD7 Nuclear Translocation to Drive Bone Formation
Microtubule actin crosslinking factor 1 (MACF1) is a large crosslinker that contributes to cell integrity and cell differentiation. Recent studies show that MACF1 is involved in multiple cellular functions such as neuron development and epidermal migration, and is the molecular basis for many degenerative diseases. MACF1 is highly abundant in bones, especially in mesenchymal stem cells; however, its regulatory role is still less understood in bone formation and degenerative bone diseases. In this study, we found MACF1 expression in mesenchymal stem cells (MSCs) of osteoporotic bone specimens was significantly lower. By conditional gene targeting to delete the mesenchymal Macf1 gene in mice, we observed in MSCs decreased osteogenic differentiation capability. During early stage bone development, the MACF1 conditional knockout (cKO) mice exhibit significant ossification retardation in skull and hindlimb, and by adulthood, mesenchymal loss of MACF1 attenuated bone mass, bone microarchitecture, and bone formation capability significantly. Further, we showed that MACF1 interacts directly with SMAD family member 7 (SMAD7) and facilitates SMAD7 nuclear translocation to initiate downstream osteogenic pathways. Hopefully these findings will expand the biological scope of the MACF1 gene, and provide an experimental basis for targeting MACF1 in degenerative bone diseases such as osteoporosis