18 research outputs found

    Association between genetically proxied glucosamine and risk of cancer and non-neoplastic disease: A Mendelian randomization study

    Get PDF
    IntroductionObservational investigations have examined the impact of glucosamine use on the risk of cancer and non-neoplastic diseases. However, the findings from these studies face limitations arising from confounding variables, reverse causation, and conflicting reports. Consequently, the establishment of a causal relationship between habitual glucosamine consumption and the risk of cancer and non-neoplastic diseases necessitates further investigation.MethodsFor Mendelian randomization (MR) investigation, we opted to employ single-nucleotide polymorphisms (SNPs) as instruments that exhibit robust associations with habitual glucosamine consumption. We obtained the corresponding effect estimates of these SNPs on the risk of cancer and non-neoplastic diseases by extracting summary data for genetic instruments linked to 49 varied cancer types amounting to 378,284 cases and 533,969 controls, as well as 20 non-neoplastic diseases encompassing 292,270 cases and 842,829 controls. Apart from the primary analysis utilizing inverse-variance weighted MR, we conducted two supplementary approaches to account for potential pleiotropy (MR-Egger and weighted median) and assessed their respective MR estimates. Furthermore, the results of the leave-one-out analysis revealed that there were no outlying instruments.ResultsOur results suggest divergence from accepted biological understanding, suggesting that genetically predicted glucosamine utilization may be linked to an increased vulnerability to specific illnesses, as evidenced by increased odds ratios and confidence intervals (95% CI) for diseases, such as malignant neoplasm of the eye and adnexa (2.47 [1.34–4.55]), benign neoplasm of the liver/bile ducts (2.12 [1.32–3.43]), benign neoplasm of the larynx (2.01 [1.36–2.96]), melanoma (1.74 [1.17–2.59]), follicular lymphoma (1.50 [1.06–2.11]), autoimmune thyroiditis (2.47 [1.49–4.08]), and autoimmune hyperthyroidism (1.93 [1.17–3.18]). In contrast to prior observational research, our genetic investigations demonstrate a positive correlation between habitual glucosamine consumption and an elevated risk of sigmoid colon cancer, lung adenocarcinoma, and benign neoplasm of the thyroid gland.ConclusionCasting doubt on the purported purely beneficial association between glucosamine ingestion and prevention of neoplastic and non-neoplastic diseases, habitual glucosamine ingestion exhibits dichotomous effects on disease outcomes. Endorsing the habitual consumption of glucosamine as a preventative measure against neoplastic and non-neoplastic diseases cannot be supported

    Blind estimation of modulation parameters for PCMA signals using frame cyclic features

    No full text
    Abstract Blind receiver technologies for paired carrier multiple access (PCMA) signals have always been a challenging task with many technical difficulties, among which the estimation of modulation parameters is a fundamental but important element. Despite some achievements in previous studies, more systematic and sophisticated estimation methods have not been adequately investigated. In this paper, schemes for the blind estimation of the symbol timing phase, amplitude attenuation, frequency offset, and carrier phase for PCMA signals in satellite communications are proposed. The data flow transmitted in satellite communication often has a certain frame structure, the most important of which is the synchronization data, namely the so-called cycle features. The proposed schemes assume that the modulated signals have fixed frame length and frame sync code and that the symbol rate has been estimated when the signals are encoded asynchronously. Distinct from the previous methods, our schemes exploit the sync waveform and the overlapping waveform, which are estimated via singular value decomposition (SVD) (using the frame cyclic features) and interference cancelation, together with their demodulation results as aid data, for the estimation of the desired parameters. The simulation results demonstrate that the schemes are effective in the parameters estimation of PCMA signals and outperform the comparison algorithms

    Generating Mobile Fluidic Traps for Selective Three-Dimensional Transport of Microobjects

    No full text
    We demonstrate noncontact transport of microscale objects in liquid environments using untethered, magnetic microrobots. The flow and vortices generated by the rotating microrobot are efficient for selective and gentle trapping, stable transport, and targeted delivery of microscale cargo. The motion of the microrobots can be precisely controlled even at very low frequencies using an advanced magnetic control signal. The design and control methodology presented here can be followed to develop microrobots utilizing the generated fluid flows and performing a variety of biomedical manipulation tasks

    Cooperative Manipulation and Transport of Microobjects Using Multiple Helical Microcarriers

    No full text
    Manipulation and transport of microscale objects in 3D with high spatiotemporal resolution require precise control over the applied forces. We report a strategy that uses specially engineered microbars having engagement points and multiple helical microcarriers that can apply reversible loads onto these holders. The helical microcarriers are actuated by externally generated, low strength magnetic fields. By optimizing the design of helical structures for precise manipulation, we fabricated microcarriers that swim with little wobbling even at low rotating frequencies. The cooperation of microcarriers generates higher propulsive forces while application of forces at multiple locations results in motion control with multiple degrees of freedom (DOF). The microbar loaded with multiple microcarriers can be employed as a single mobile device for the realization of higher order manipulation tasks
    corecore