40 research outputs found

    Fluorescence Characteristics of Triazine-manufacturing Wastewater

    Get PDF
    Samples taken at different points in the wastewater treatment process of a triazine-manufacturing plant were scanned by fluorescence spectroscopy, in the wavelength range of 200-900 nm. Reproducibly, the fluorescence spectra revealed one single major peak at excitation and emission wavelengths of 258 and 370 nm respectively. Aqueous solutions of purified active compounds, including Atrazine, Propazine, Simazine, Terbuthylazine, Metolachlor, and Benoxacor, were also scanned. No significant fluorescence was observed in these standard solutions at concentrations up to 100 mg/L. Selected plant samples as well as standard solutions of Atrazine, Metolachlor, and toluene were further analyzed using high-performance liquid chromatography with absorbance and fluorescence detections. Pure Atrazine was found to be light-absorbing but nonfluorescent while Metolachlor, with a benzene ring in its structure, was weakly fluorescent. The plant wastewater samples exhibited a single strong fluorescence peak, which also appeared as the dominant peak in the fluorescence chromatogram of Atrazine standard (due to impurity). The findings strongly suggested that the responsible fluorescent compound in the plant\u27s wastewater was a byproduct of the synthesis processes. The fluorescent compound was found to be effectively removed by the carbon adsorption treatment (CAT) unit employed in the plant but not by the biological activated-sludge treatment process alone. The results indicated the feasibility of using online fluorescence measurements to effectively monitor the performance of the CAT unit

    Enhancing the Performance of the Half Tin and Half Lead Perovskite Solar Cells by Suppression of the Bulk and Interfacial Charge Recombination

    Get PDF
    In this article it is investigated how the hole extraction layer (HEL) influence the charge recombination and performance in half tin and half lead (FASn(0.5)Pb(0.5)I(3)) based solar cells (HPSCs). FASn(0.5)Pb(0.5)I(3) film grown on PEDOT:PSS displays a large number of pin-holes and open grain boundaries, resulting in a high defect density and shunts in the perovskite film causing significant bulk and interfacial charge recombination in the HPSCs. By contrast, FASn(0.5)Pb(0.5)I(3) films grown on PCP-Na, an anionic conjugated polymer, show compact and pin-hole free morphology over a large area, which effectively eliminates the shunts and trap states. Moreover, PCP-Na is characterized by a higher work function, which determines a favorable energy alignment at the anode interface, enhancing the charge extraction. Consequently, both the interfacial and bulk charge recombination in devices using PCP-Na HEL are considerably reduced giving rise to an overall improvement of all the device parameters. The HPSCs fabricated with this HEL display power conversion efficiency up to 16.27%, which is 40% higher than the efficiency of the control devices using PEDOT:PSS HEL (11.60%). Furthermore, PCP-Na as HEL offers superior performance in larger area devices compared to PEDOT:PSS

    Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative

    Get PDF
    In this work, we investigate how electron extraction layers (EELs) with different dielectric constants affect the device performance and the light-soaking phenomenon in hybrid perovskite solar cells (HPSCs). Fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) having a dielectric constant of 5.9 is employed as an EEL in HPSCs. The commonly used fullerene derivative [60] PCBM, which has identical energy levels but a lower dielectric constant of 3.9, is used as a reference. The device using PTEG-1 as the EEL shows a negligible light soaking effect, with a power conversion efficiency (PCE) of 15.2% before light soaking and a minor increase to 15.7% after light soaking. In contrast, the device using [60] PCBM as the EEL shows severe light soaking, with the PCE improving from 3.8% to 11.7%. Photoluminescence spectroscopy and impedance spectroscopy measurements indicate that trap-assisted recombination at the interface between the hybrid perovskite and the EEL is the cause of the light soaking effect in HPSCs. The trap-assisted recombination is effectively suppressed at the perovskite/PTEG-1 interface, while severe trap assisted recombination takes place at the perovskite/[60] PCBM interface. We attributed these experimental findings to the fact that the higher dielectric constant of PTEG-1 helps to screen the recombination between the traps and free electrons. In addition, the electron donating side chains of PTEG-1 may also contribute to the passivation of the electron traps. As a consequence, the devices using PTEG-1 as the EEL display a considerable increase in the efficiency and a negligible light soaking effect

    Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite

    Get PDF
    Developing sustainable and less-expensive technique is always challenging task in water treatment process. This chapter explores the recent development of photocatalysis technique in organic pollutant removal from the water. Particularly, advantages of graphene oxide in promoting the catalytic performance of semiconductor, metal nanoparticle and polymer based photocatalyst materials. Owing to high internal surface area and rapid electron conducting property of graphene oxide fostering as backbone scaffold for effective hetero-photocatalyst loading, and rapid photo-charge separation enables effective degradation of pollutant. This chapter summaries the recent development of graphene oxide composite (metal oxide, metal nanoparticle, metal chalcogenides, and polymers) in semiconductor photocatalysis process towards environmental remediation application

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Emerging electronic applications of fullerene derivatives: an era beyond OPV

    Get PDF
    Hummelen et al. for the first time reported the synthetic route and characterization of a soluble methanofullerene derivative in 1995. In the same year, such a fullerene derivative was successfully used as the acceptor of internal donor-acceptor heterojunctions in the field of organic photovoltaics (OPV). Since then, it has opened an era of fullerene derivatives towards OPV application until 2015. Beyond OPV, several new research directions for solution-processable fullerene derivatives recently appeared, including perovskite solar cells, organic thermoelectrics, molecular electronics, and organic electrochemical transistors. This review highlights the important role of fullerene derivatives in these emerging research areas and summarizes the recent progress in the development of fullerene derivatives in these new research fields. These fields require fullerene derivatives with new properties, such as strong electron-donating ability, large polarity, or excellent water permeability. Therefore, new design strategies of fullerene derivatives and device engineering considerations are desired

    Erysiphe deutziicola sp. nov. (Erysiphaceae, Ascomycota), a powdery mildew species found on Deutzia parviflora (Hydrangeaceae) with unusual appendages

    No full text
    A powdery mildew (Erysiphales) has recently been collected on leaves of an ornamental shrub Deutzia parviflora in Baihua Mountain, Beijing, China. Microscopic examination of the chasmothecia suggested a species belonging to Erysiphe sect. Erysiphe, above all due to mycelioid chasmothecial appendages, although circinate apices of the appendages were rather in favour of Erysiphe sect. Uncinula, which is a fairly rare combination of appendage characteristics in Erysiphe. Phylogenetic analyses of ITS and 28S rDNA sequences demonstrated that the two examined powdery mildew collections on D. parviflora clustered together as an independent lineage within Erysiphe with 100% bootstrap support, representing a species of its own, which is phylogenetically allied to, but clearly distinct from Erysiphe deutziae and, in addition, morphologically quite different from all known Erysiphe species on hosts belonging to the Hydrangeaceae. The new species on D. parviflora is described as Erysiphe deutziicola

    ZFP36 loss-mediated BARX1 stabilization promotes malignant phenotypes by transactivating master oncogenes in NSCLC

    No full text
    Abstract Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with high morbidity and mortality worldwide. Although the dysregulation of BARX1 expression has been shown to be associated with malignant cancers, including NSCLC, the underlying mechanism remains elusive. In this study, we identified BARX1 as a common differentially expressed gene in lung squamous cell carcinoma and adenocarcinoma. Importantly, we uncovered a novel mechanism behind the regulation of BARX1, in which ZFP36 interacted with 3’UTR of BARX1 mRNA to mediate its destabilization. Loss of ZFP36 led to the upregulation of BARX1, which further promoted the proliferation, migration and invasion of NSCLC cells. In addition, the knockdown of BARX1 inhibited tumorigenicity in mouse xenograft. We demonstrated that BARX1 promoted the malignant phenotypes by transactivating a set of master oncogenes involved in the cell cycle, DNA synthesis and metastasis. Overall, our study provides insights into the mechanism of BARX1 actions in NSCLC and aids a better understanding of NSCLC pathogenesis

    Epidemiology and Clinical Presentations of Respiratory Syncytial Virus Subgroups A and B Detected with Multiplex Real-Time PCR.

    No full text
    Respiratory syncytial virus (RSV) is one of the most important pathogenic infections of children and requires in-depth research worldwide, and especially in developing countries. We used a novel multiplex real-time PCR to test 5483 patients (≤ 14 years old) hospitalized with respiratory illness in Guangzhou, China, over a 3-year period. Of these patients, 729 were positive for RSV-A (51.2%, 373/729) or RSV-B (48.8%, 356/729), but none was infected with both viruses. Two seasonal peaks in total RSV were detected at the changes from winter to spring and from summer to autumn. RSV-B was dominant in 2013 and RSV-A in 2015, whereas RSV-A and RSV-B cocirculated in 2014. The clinical presentations of 645 RSV-positive patients were analyzed. Bronchiolitis, dyspnea, coryza, vomiting, poor appetite, and diarrhea occurred more frequently in RSV-A-positive than RSV-B-positive patients, whereas chill, headache, myalgia, debility, and rash etc. were more frequent in RSV-B-positive than RSV-A-positive patients, suggesting specific clinical characteristics for RSV-A and RSV-B. Coinfectons with other pathogens were common and diverse. Bronchiolitis, fever (≥ 38°C), and poor appetite were more frequent in patients with single RSV infections than in coinfected patients, suggesting the key pathogenic activity of RSV. Analysis of the relationships between the comparative viral load and clinical presentations showed significant differences in bronchiolitis, fever (≥ 38°C), and rash etc. among patients with different viral loads. This study provides a novel rapid method for detecting RSV subgroups, and provides new insights into the epidemiology and clinical implications of RSV

    New Epidemiological and Clinical Signatures of 18 Pathogens from Respiratory Tract Infections Based on a 5-Year Study.

    No full text
    Respiratory tract infections (RTIs) are a heavy burden on society. However, due to the complex etiology of RTIs, the clinical diagnosis, treatment, and prevention of these infections remain challenging, especially in developing countries.To determine the epidemiological and clinical characteristics of 18 respiratory pathogens, we analyzed 12,502 patients with acute respiratory infections (ARIs) by performing polymerase chain reaction (PCR) on patient pharyngeal swabs.Samples positive for at least 1 pathogen were obtained from 48.42% of the total patients. Of these pathogen-positive patients, 17.99% were infected with more than 1 pathogen. Of the 18 pathogens analyzed, four were detected with a positive detection rate (PDR) > 5%: influenza A virus (IAV) > respiratory syncytial virus (RSV) >Mycoplasma pneumoniae (MP) > human coronavirus (HCoV). The pathogens with the 4 highest co-infection rates (CIRs) were as follows: HCoV > human bocavirus (HBoV) > enterovirus (EV) > parainfluenza virus (PIV). The overall positive detection rate (PDR) varied significantly according to patient age, the season and year of detection, and the disease subgroup, but not according to patient sex. The individual PDRs of the pathogens followed 3 types of distributions for patient sex, 4 types of distributions for patient age, 4 types of seasonal distributions, 2 types of seasonal epidemic trends, 4 types of yearly epidemic trends, and different susceptibility distributions in the disease subgroups. Additionally, the overall CIR showed significantly different distributions according to patient sex, patient age, and the disease subgroup, whereas the CIRs of individual pathogens suggested significant preference characteristics.IAV remains the most common pathogen among the pathogens analyzed. More effort should be directed toward the prevention and control of pathogens that show a trend of increasing incidence such as HCoV, human adenovirus (ADV), and RSV. Although clinically distinguishing specific pathogens responsible for RTIs is difficult, the epidemiological and clinical characteristics of the various RTI-causing agents could provide clues for clinicians, thereby informing decisions regarding prevention and medication and guiding appropriate public health strategies
    corecore