607 research outputs found

    Interface Motion and Pinning in Small World Networks

    Full text link
    We show that the nonequilibrium dynamics of systems with many interacting elements located on a small-world network can be much slower than on regular networks. As an example, we study the phase ordering dynamics of the Ising model on a Watts-Strogatz network, after a quench in the ferromagnetic phase at zero temperature. In one and two dimensions, small-world features produce dynamically frozen configurations, disordered at large length scales, analogous of random field models. This picture differs from the common knowledge (supported by equilibrium results) that ferromagnetic short-cuts connections favor order and uniformity. We briefly discuss some implications of these results regarding the dynamics of social changes.Comment: 4 pages, 5 figures with minor corrections. To appear in Phys. Rev.

    Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Procedures were devised to measure trace concentrations of I-129 in the inorganic salt CsI as well as in organic liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to improvement in sensitivities by several orders of magnitude over other methods. No evidence of their existence in these materials were observed. Limits of < 6 X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI and liquid scintillator, respectively, were derived.These are the first results in a research program whose goals are to develop techniques to measure trace radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass Spectrometr

    Optimal surgical care for adolescent idiopathic scoliosis: an international consensus

    Get PDF
    Purpose The surgical management of adolescent idiopathic scoliosis (AIS) has seen many developments in the last two decades. Little high-level evidence is available to support these changes and guide treatment. This study aimed to identify optimal operative care for adolescents with AIS curves between 40° and 90° Cobb angle. Methods From July 2012 to April 2013, the AOSpine Knowledge Forum Deformity performed a modified Delphi survey where current expert opinion from 48 experienced deformity surgeons, representing 29 diverse countries, was gathered. Four rounds were performed: three web-based surveys and a final face-to-face meeting. Consensus was achieved with ≥70 % agreement. Data were analyzed qualitatively and quantitatively. Results Consensus of what constitutes optimal care was reached on greater than 60 aspects including: preoperative radiographs; posterior as opposed to anterior (endoscopic) surgical approaches; use of intraoperative spinal cord monitoring; use of local autologous bone (not iliac crest) for grafts; use of thoracic and lumbar pedicle screws; use of titanium anchor points; implant density of <80 % for 40°–70° curves; and aspects of postoperative care. Variability in practice patterns was found where there was no consensus. In addition, there was consensus on what does not constitute optimal care, including: routine pre- and intraoperative traction; routine anterior release; use of bone morphogenetic proteins; and routine postoperative CT scanning. Conclusions International consensus was found on many aspects of what does and does not constitute optimal operative care for adolescents with AIS. In the absence of current high-level evidence, at present, these expert opinion findings will aid health care providers worldwide define appropriate care in their regions. Areas with no consensus provide excellent insight and priorities for future researchpublished_or_final_versio

    Entropic force approach to noncommutative Schwarzschild black holes signals a failure of current physical ideas

    Full text link
    Recently, a new perspective of gravitational-thermodynamic duality as an entropic force arising from alterations in the information connected to the positions of material bodies is found. In this paper, we generalize some aspects of this model in the presence of noncommutative Schwarzschild black hole by applying the method of coordinate coherent states describing smeared structures. We implement two different distributions: (a) Gaussian and (b) Lorentzian. Both mass distributions prepare the similar quantitative aspects for the entropic force. Our study shows, the entropic force on the smallest fundamental unit of a holographic screen with radius r0r_0 vanishes. As a result, black hole remnants are unconditionally inert even gravitational interactions do not exist therein. So, a distinction between gravitational and inertial mass in the size of black hole remnant is observed, i.e. the failure of the principle of equivalence. In addition, if one considers the screen radius to be less than the radius of the smallest holographic surface at the Planckian regime, then one encounters some unusual dynamical features leading to gravitational repulsive force and negative energy. On the other hand, the significant distinction between the two distributions is conceived to occur around r0r_0, and that is worth of mentioning: at this regime either our analysis is not the proper one, or non-extensive statistics should be employed.Comment: 15 pages, 2 figures, new references added, minor revision, Title changed, to appear in EPJ Plu

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    Get PDF
    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4-5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycineconjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+ee^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure
    corecore