4 research outputs found

    Reinforcement of natural rubber with core-shell structure silica-poly(Methyl Methacrylate) nanoparticles

    Get PDF
    A highly performing natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate), SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA). The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved

    Fabrication of one-dimensional Ag/multiwalled carbon nanotube nano-composite

    Get PDF
    Composite made of multiwalled carbon nanotubes coated with silver was fabricated by an electroless deposition process. The thickness of silver layer is about 40 to 60 nm, characterized as nano-crystalline with (111) crystal orientation along the nanotube's axial direction. The characterization of silver/carbon nanotube [Ag/CNT] nanowire has shown the large current carrying capability, and the electric conductivity is similar to the pure silver nanowires that Ag/CNT would be promising as building blocks for integrated circuits

    Optimizing Antimicrobial Dosing for Critically Ill Patients with MRSA Infections: A New Paradigm for Improving Efficacy during Continuous Renal Replacement Therapy

    No full text
    The dosage regimen of vancomycin, teicoplanin and daptomycin remains controversial for critically ill patients undergoing continuous renal replacement therapy (CRRT). Monte Carlo simulation was applied to identify the optimal regimens of antimicrobial agents in patients with methicillin-resistant Staphylococcus aureus (MRSA) infections based on the mechanisms of different CRRT modalities on drug clearance. The optimal vancomycin dosage for patients received a CRRT doses ≤ 30 mL/kg/h was 20 mg/kg loading dose followed by 500 mg every 8 h, while 1 g every 12 h was appropriate when 35 mL/kg/h was prescribed. The optimal teicoplanin dosage under a CRRT dose ≤ 25 mL/kg/h was four loading doses of 10 mg/kg every 12 h followed by 10 mg/kg every 48 h, 8 mg/kg every 24 h and 6 mg/kg every 24 h for continuous veno-venous hemofiltration, continuous veno-venous hemodialysis and continuous veno-venous hemodiafiltration, respectively. When the CRRT dose increased to 30–35 mL/kg/h, the teicoplanin dosage should be increased by 30%. The recommended regimen for daptomycin was 6–8 mg/kg every 24 h under a CRRT dose ≤ 25 mL/kg/h, while 8–10 mg/kg every 24 h was optimal under 30–35 mg/kg/h. The CRRT dose has an impact on probability of target attainment and CRRT modality only influences teicoplanin

    Preparation and characterization of natural rubber/silica nanocomposites using rule of similarity in latex

    Full text link
    Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO 2-PMMA) particles and PMMA-modified natural rubber matrix (NR-PMMA). The microstructure of SiO2 and nanocomposites with different SiO 2 contents was characterized by fourier transform infrared spectroscopy (FTIR); the morphology of nanocomposites was investigated with scanning electron microscopy (SEM); the tensile strength was characterized by tensile testing machine and the thermal stability of composites was studied by thermal gravimetric analysis. Results showed that PMMA chains have successfully grafted onto the surface of SiO2, and the core-shell SiO 2-PMMA nanoparticles and NR-PMMA latex have been perfectly incorporated. SiO2-PMMA nanoparticles are evenly distributed over the NR matrix with an average size in the range of 60-100 nm at the low content (SiO2? 3 wt%), while aggregations are apparently observed when 5 wt% SiO2 is loaded. In addition, NR/SiO2 composities possess a considerable improvement in ageing resistance compared with the pure NR. The tensile strength of composite increases from 6.99 to 12.72 MPa, reaching the highest value at a 0.5 wt% SiO2 loading, and then the figure decreases gradually because of the aggregation of SiO2 nanoparticles. It is anticipated that the reported process is to provide a simple and economic way for preparing NR composites
    corecore