119 research outputs found
Supervisory Control of Fuzzy Discrete Event Systems: A Formal Approach
Fuzzy {\it discrete event systems} (DESs) were proposed recently by Lin and
Ying [19], which may better cope with the real-world problems with fuzziness,
impreciseness, and subjectivity such as those in biomedicine. As a continuation
of [19], in this paper we further develop fuzzy DESs by dealing with
supervisory control of fuzzy DESs. More specifically, (i) we reformulate the
parallel composition of crisp DESs, and then define the parallel composition of
fuzzy DESs that is equivalent to that in [19]; {\it max-product} and {\it
max-min} automata for modeling fuzzy DESs are considered; (ii) we deal with a
number of fundamental problems regarding supervisory control of fuzzy DESs,
particularly demonstrate controllability theorem and nonblocking
controllability theorem of fuzzy DESs, and thus present the conditions for the
existence of supervisors in fuzzy DESs; (iii) we analyze the complexity for
presenting a uniform criterion to test the fuzzy controllability condition of
fuzzy DESs modeled by max-product automata; in particular, we present in detail
a general computing method for checking whether or not the fuzzy
controllability condition holds, if max-min automata are used to model fuzzy
DESs, and by means of this method we can search for all possible fuzzy states
reachable from initial fuzzy state in max-min automata; also, we introduce the
fuzzy -controllability condition for some practical problems; (iv) a number
of examples serving to illustrate the applications of the derived results and
methods are described; some basic properties related to supervisory control of
fuzzy DESs are investigated. To conclude, some related issues are raised for
further consideration
- …