194 research outputs found

    Empirical metallicity-dependent calibrations of effective temperature against colours for dwarfs and giants based on interferometric data

    Full text link
    We present empirical metallicity-dependent calibrations of effective temperature against colours for dwarfs of luminosity classes IV and V and for giants of luminosity classes II and III, based on a collection from the literature of about two hundred nearby stars with direct effective temperature measurements of better than 2.5 per cent. The calibrations are valid for an effective temperature range 3,100 - 10,000 K for dwarfs of spectral types M5 to A0 and 3,100 - 5,700 K for giants of spectral types K5 to G5. A total of twenty-one colours for dwarfs and eighteen colours for giants of bands of four photometric systems, i.e. the Johnson (UBVRJIJJHKUBVR_{\rm J}I_{\rm J}JHK), the Cousins (RCICR_{\rm C}I_{\rm C}), the Sloan Digital Sky Survey (SDSS, grgr) and the Two Micron All Sky Survey (2MASS, JHKsJHK_{\rm s}), have been calibrated. Restricted by the metallicity range of the current sample, the calibrations are mainly applicable for disk stars ([Fe/H] ≳ −1.0\,\gtrsim\,-1.0). The normalized percentage residuals of the calibrations are typically 2.0 and 1.5 per cent for dwarfs and giants, respectively. Some systematic discrepancies at various levels are found between the current scales and those available in the literature (e.g. those based on the infrared flux method IRFM or spectroscopy). Based on the current calibrations, we have re-determined the colours of the Sun. We have also investigated the systematic errors in effective temperatures yielded by the current on-going large scale low- to intermediate-resolution stellar spectroscopic surveys. We show that the calibration of colour (g−Ksg-K_{\rm s}) presented in the current work provides an invaluable tool for the estimation of stellar effective temperature for those on-going or upcoming surveys.Comment: 28 pages, 19 figures, 8 tables, accepted for publication in MNRA

    Galactic Disk Bulk Motions as Revealed by the LSS-GAC DR2

    Full text link
    We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ∼\sim 2 kpc, a local subset of the global sample consisting ∼\sim 5,400 stars within 150 pc, and an anti-center sample containing ∼\sim 4,400 AFGK dwarfs and red clump stars within windows of a few degree wide centered on the Galactic anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to ∼\sim 2 kpc with a spatial resolution of ∼\sim 250 pc. Typical values of the radial and vertical components of bulk motion range from −-15 km s−1^{-1} to 15 km s−1^{-1}, while the lag behind the circular speed dominates the azimuthal component by up to ∼\sim 15 km s−1^{-1}. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens km s−1^{-1}. Bending- and breathing-mode perturbations are clearly visible, and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars of different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. (2012) at Galactocentric radii 10--11 kpc is confirmed. However, just beyond this distance, our data also reveal a new triple-peaked structure.Comment: 27 pages, 17 figures, Accepted for publication in a special issue of Research in Astronomy and Astrophysics on LAMOST science

    High-speed ghost imaging by an unpredictable optical phased array

    Get PDF
    Ghost imaging (GI) retrieves an image from the correlation between a sequence of illumination patterns on the object and their corresponding bucket detections. Traditionally, GI requires the precise information of the illumination patterns, which raises technology barriers on building a high-speed illumination source, limiting the scope of its application. In this study, we propose a high-speed GI system, which implements a self-correlation with a purely optical operation without determining illumination patterns. The light source is an optical phased array (OPA), built of a set of waveguide-type electro-optic phase modulators. The OPA is driven to randomly change the phases in every 200 ns, generating speckle patterns at a rate of 5 MHz. Although the speckle patterns are not predictable or post-determinable, with the help of the naked-eye GI scheme, the system in real time optically generates the images of the object at a frame rate of more than 1 kHz, which can be directly observed by eyes or using a camera. This method avoids acquiring the information of the illumination, thus providing a simple and easy way to realize high-speed GI. It also inspires a different way of applying OPAs to high-speed imaging

    The LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap I. The Spectroscopic Redshift Catalog

    Full text link
    We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extra-galactic) by using repeating observations with a limiting magnitude of r=18.1 magr=18.1~mag in two 20 deg220~deg^2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods and the basic performance parameters of LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with uncertainty of σz/(1+z)<0.001\sigma_{z}/(1+z)<0.001. In total, there are 1528 redshifts (623 absorption and 905 emission line galaxies) in Field A and 1570 redshifts (569 absorption and 1001 emission line galaxies) in Field B have been measured. The results show that it is possible to derive redshift from low SNR galaxies with our post-processing and visual inspection. Our analysis also indicates that up to 1/4 of the input targets for a typical extra-galactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2−W3=2.4W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in MrM_r/W2−W3W2-W3 and M∗M_*/W2−W3W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼30%\sim30\%).Comment: 19 pages, 14 figures, 2 MRT, accepted by ApJ

    Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys

    Get PDF
    Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys (Macaca fascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment
    • …
    corecore