6 research outputs found

    Inulin ameliorates metabolic syndrome in high-fat diet-fed mice by regulating gut microbiota and bile acid excretion

    Get PDF
    Background: Inulin is a natural plant extract that improves metabolic syndrome by modulating the gut microbiota. Changes in the gut microbiota may affect intestinal bile acids. We suggest that inulin may improve metabolism by inducing bile acid excretion by gut microbes.Methods: Male C57/BL mice were fed either a high-fat diet (60% calories) or a regular diet for 16 weeks, with oral inulin (10% w/w). At the end of the experiment, the gene expression levels (FGF15, CD36, Srebp-1c, FASN, and ACC) in the liver and intestines, as well as the serum levels of triglycerides (TGs), low-density lipoprotein (LDL) cholesterol, total cholesterol, and free fatty acids, were collected. The expression of FGF15 was examined using Western blot analysis. The fat distribution in the liver and groin was detected by oil red and hematoxylin and eosin staining. Simultaneously, the levels of serum inflammatory factors (alanine aminotransferase and aspartate aminotransferase) were detected to explore the side effects of inulin.Results: Inulin significantly improved glucose tolerance and insulin sensitivity, and decreased body weight and serum TG and LDL levels, in mice fed normal diet. Furthermore, inulin increased the α-diversity of the gut microbiota and increased the fecal bile acid and TG excretion in inulin-treated mice. In addition, inulin significantly reduced lipid accumulation in liver and inguinal fat, white fat weight, and hepatic steatosis. Western blot analysis showed that inulin reduced the expression of FGF15, a bile acid reabsorption protein.Conclusion: Inulin ameliorates the glucose and lipid metabolic phenotypes of mice fed a normal diet, including decreased intestinal lipid absorption, increased glucose tolerance, increased insulin sensitivity, and decreased body weight. These changes may be caused by an increase in bile acid excretion resulting from changes in the gut microbiota that affect intestinal lipid absorption

    Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A and Promotes Breast Cancer Stem-Like Cells

    Get PDF
    Chronic stress triggers activation of the sympathetic nervous system and drives malignancy. Using an immunodeficient murine system, we showed that chronic stress–induced epinephrine promoted breast cancer stem-like properties via lactate dehydrogenase A–dependent (LDHA-dependent) metabolic rewiring. Chronic stress–induced epinephrine activated LDHA to generate lactate, and the adjusted pH directed USP28-mediated deubiquitination and stabilization of MYC. The SLUG promoter was then activated by MYC, which promoted development of breast cancer stem-like traits. Using a drug screen that targeted LDHA, we found that a chronic stress–induced cancer stem-like phenotype could be reversed by vitamin C. These findings demonstrated the critical importance of psychological factors in promoting stem-like properties in breast cancer cells. Thus, the LDHA-lowering agent vitamin C can be a potential approach for combating stress-associated breast cancer

    Alkaline seawater electrolysis at industrial level: recent progress and perspective

    No full text
    Industrial hydrogen generation through water splitting, powered by renewable energy such as solar, wind and marine, paves a potential way for energy and environment sustainability. However, state-of-the-art electrolysis using high purity water as hydrogen source at an industrial level would bring about crisis of freshwater resource. Seawater splitting provides a practical path to solve potable water shortage, but still faces great challenges for large-scale industrial operation. Here we summarize recent developments in seawater splitting, covering general mechanisms, design criteria for electrodes, and industrial electrolyzer for direct seawater splitting. Multi-objective optimization methods to address the key challenges of active sites, reaction selectivity, corrosion resistance, and mass transfer ability will be discussed. The recent development in seawater electrolyzer and acquaint efficient strategies to design direct devices for long-time operation are also highlighted. Finally, we provide our own perspective to future opportunities and challenges towards direct seawater electrolysis. 由太阳能、 风能和海洋等可再生能源驱动的工业级水分解产氢为能源和环境的可持续性发展开辟了一条极具潜力的道路。然而, 在工业上最先进电解技术使用高纯水作为氢源, 这将带来严重的淡水资源危机。海水分解为饮用水短缺提供了一条切实可行的解决途径, 但仍面临规模工业化生产的巨大挑战。在这里,我们总结了海水分解的最新进展,包括反应机制、 电极设计标准和直接海水分解的工业电解槽。 深入讨论了应对海水电解中的关键挑战, 如活性位点、 反应选择性、 耐腐蚀性和传质能力等的解决方案。 此外, 该文章重点总结了海水电解设备的最新发展, 并提出了设计长寿命直接海水电解装置的有效策略。 最后, 我们对直接海水电解的未来机遇和挑战提出了自己的观点。Ministry of Education (MOE)Submitted/Accepted versionThis work is financially supported from the Singapore Ministry of Education by Academic ResearchFund Tier 1 (RG125/21 ) and the National NaturalScience Foundation of China (No.: 22005116)

    Biaxially strained MoS₂ nanoshells with controllable layers boost alkaline hydrogen evolution

    No full text
    Strain in layered transition-metal dichalcogenides (TMDs) is a type of effective approach to enhance the catalytic performance by activating their inert basal plane. However, compared with traditional uniaxial strain, the influence of biaxial strain and the TMD layer number on the local electronic configuration remains unexplored. Herein, via a new in situ self-vulcanization strategy, biaxially strained MoS2 nanoshells in the form of a single-crystalline Ni3 S2 @MoS2 core-shell heterostructure are realized, where the MoS2 layer is precisely controlled between the 1 and 5 layers. In particular, an electrode with the bilayer MoS2 nanoshells shows a remarkable hydrogen evolution reaction activity with a small overpotential of 78.1 mV at 10 mA cm-2 , and negligible activity degradation after durability testing. Density functional theory calculations reveal the contribution of the optimized biaxial strain together with the induced sulfur vacancies and identify the origin of superior catalytic sites in these biaxially strained MoS2 nanoshells. This work highlights the importance of the atomic-scale layer number and multiaxial strain in unlocking the potential of 2D TMD electrocatalysts.Ministry of Education (MOE)Submitted/Accepted versionThis work was supported from the Singapore Ministry of Education by AcRF Tier 1 (RG125/21). The authors acknowledge financial support from the National Science Fund for Distinguished Young Scholars (Grant No. 51825103), the Natural Science Foundation of China (Grant Nos. 52001306, 22005116), and the International Postdoctoral Exchange Fellowship Program (Grant No. 20190067

    Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells

    No full text
    Chronic stress triggers activation of the sympathetic nervous system and drives malignancy. Using an immunodeficient murine system, we showed that chronic stress-induced epinephrine promoted breast cancer stem-like properties via lactate dehydrogenase A-dependent (LDHA-dependent) metabolic rewiring. Chronic stress-induced epinephrine activated LDHA to generate lactate, and the adjusted pH directed USP28-mediated deubiquitination and stabilization of MYC. The SLUG promoter was then activated by MYC, which promoted development of breast cancer stem-like traits. Using a drug screen that targeted LDHA, we found that a chronic stress-induced cancer stem-like phenotype could be reversed by vitamin C. These findings demonstrated the critical importance of psychological factors in promoting stem-like properties in breast cancer cells. Thus, the LDHA-lowering agent vitamin C can be a potential approach for combating stress-associated breast cancer
    corecore