49 research outputs found

    Wide‐bandwidth nanocomposite‐sensor integrated smart mask for tracking multiphase respiratory activities

    Get PDF
    Wearing masks has been a recommended protective measure due to the risks of coronavirus disease 2019 (COVID-19) even in its coming endemic phase. Therefore, deploying a “smart mask” to monitor human physiological signals is highly beneficial for personal and public health. This work presents a smart mask integrating an ultrathin nanocomposite sponge structure-based soundwave sensor (≈400 µm), which allows the high sensitivity in a wide-bandwidth dynamic pressure range, i.e., capable of detecting various respiratory sounds of breathing, speaking, and coughing. Thirty-one subjects test the smart mask in recording their respiratory activities. Machine/deep learning methods, i.e., support vector machine and convolutional neural networks, are used to recognize these activities, which show average macro-recalls of ≈95% in both individual and generalized models. With rich high-frequency (≈4000 Hz) information recorded, the two-/tri-phase coughs can be mapped while speaking words can be identified, demonstrating that the smart mask can be applicable as a daily wearable Internet of Things (IoT) device for respiratory disease identification, voice interaction tool, etc. in the future. This work bridges the technological gap between ultra-lightweight but high-frequency response sensor material fabrication, signal transduction and processing, and machining/deep learning to demonstrate a wearable device for potential applications in continual health monitoring in daily life

    The Biofabrication of Diseased Artery In Vitro Models

    No full text
    As the leading causes of global death, cardiovascular diseases are generally initiated by artery-related disorders such as atherosclerosis, thrombosis, and aneurysm. Although clinical treatments have been developed to rescue patients suffering from artery-related disorders, the underlying pathologies of these arterial abnormalities are not fully understood. Biofabrication techniques pave the way to constructing diseased artery in vitro models using human vascular cells, biomaterials, and biomolecules, which are capable of recapitulating arterial pathophysiology with superior performance compared with conventional planar cell culture and experimental animal models. This review discusses the critical elements in the arterial microenvironment which are important considerations for recreating biomimetic human arteries with the desired disorders in vitro. Afterward, conventionally biofabricated platforms for the investigation of arterial diseases are summarized, along with their merits and shortcomings, followed by a comprehensive review of advanced biofabrication techniques and the progress of their applications in establishing diseased artery models

    Numerical Simulations of Non-Point Source Pollution in a Small Urban Catchment: Identification of Pollution Risk Areas and Effectiveness of Source-Control Measures

    No full text
    Urban non-point source pollution is becoming a serious issue under the context of rapid urbanization and its impacts on surface hydrologic processes. The identification of non-point source risk areas and the effectiveness of source-control measures provides important first steps to improve the degrading aquatic environment but is challenged by the complex dynamics and variabilities of surface pollutants in urban environments. In this study, we investigate the spatial and temporal variabilities of non-point source pollution in a small urban catchment based on numerical simulations and in-situ samplings. Our results show that residential, industrial, and commercial land contribute to the most pollutant loadings and are the main constituents of the pollution risk area. Rainfall duration and intensity are the main factors in determining the temporal variations of urban non-point source pollution. There is no correlation between early drought days and pollution load. Numerical simulations show that it is more effective to increase urban vegetation coverage than to enhance road cleaning for effective non-surface pollution control. For enhanced road cleaning, it is more effective to improve the frequency of road cleaning than its efficiency. Our results provide important guidance for effective controls of non-point source pollution as well as the establishment of long-term surface pollutant monitoring network in complex urban environments

    Comparative Genomic Analysis Determines the Functional Genes Related to Bile Salt Resistance in Lactobacillus salivarius

    No full text
    Lactobacillus salivarius has drawn attention because of its promising probiotic functions. Tolerance to the gastrointestinal tract condition is crucial for orally administrated probiotics to exert their functions. However, previous studies of L. salivarius have only focused on the bile salt resistance of particular strains, without uncovering the common molecular mechanisms of this species. Therefore, in this study, we expanded our research to 90 L. salivarius strains to explore their common functional genes for bile salt resistance. First, the survival rates of the 90 L. salivarius strains in 0.3% bile salt solutions were determined. Comparative genomics analysis was then performed to screen for the potential functional genes related to bile salt tolerance. Next, real-time polymerase chain reaction and gene knockout experiments were conducted to further verify the tolerance-related functional genes. The results indicated that the strain-dependent bile salt tolerance of L. salivarius was mainly associated with four peptidoglycan synthesis-related genes, seven phosphotransferase system-related genes, and one chaperone-encoding gene involved in the stress response. Among them, the GATase1-encoding gene showed the most significant association with bile salt tolerance. In addition, four genes related to DNA damage repair and substance transport were redundant in the strains with high bile salt tolerance. Besides, cluster analysis showed that bile salt hydrolases did not contribute to the bile salt tolerance of L. salivarius. In this study, we determined the global regulatory genes, including LSL_1568, LSL_1716 and LSL_1709, for bile salt tolerance in L. salivarius and provided a potential method for the rapid screening of bile salt-tolerant L. salivarius strains, based on PCR amplification of functional genes

    Deep Sequencing and Screening of Differentially Expressed MicroRNAs Related to Milk Fat Metabolism in Bovine Primary Mammary Epithelial Cells

    No full text
    Milk fat is a key factor affecting milk quality and is also a major trait targeted in dairy cow breeding. To determine how the synthesis and the metabolism of lipids in bovine milk is regulated at the miRNA level, primary mammary epithelial cells (pMEC) derived from two Chinese Holstein dairy cows that produced extreme differences in milk fat percentage were cultured by the method of tissue nubbles culture. Small RNA libraries were constructed from each of the two pMEC groups, and Solexa sequencing and bioinformatics analysis were then used to determine the abundance of miRNAs and their differential expression pattern between pMECs. Target genes and functional prediction of differentially expressed miRNAs by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analysis illustrated their roles in milk fat metabolism. Results show that a total of 292 known miRNAs and 116 novel miRNAs were detected in both pMECs. Identification of known and novel miRNA candidates demonstrated the feasibility and sensitivity of sequencing at the cellular level. Additionally, 97 miRNAs were significantly differentially expressed between the pMECs. Finally, three miRNAs including bta-miR-33a, bta-miR-152 and bta-miR-224 whose predicted target genes were annotated to the pathway of lipid metabolism were screened and verified by real-time qPCR and Western-blotting experiments. This study is the first comparative profiling of the miRNA transcriptome in pMECs that produce different milk fat content

    Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde-toluene/xylene mixtures by Pd cocatalyst on TiO2

    Get PDF
    Photocatalytic removal of single volatile organic compounds (VOCs) has been widely investigated; however, photodecomposition of VOC mixtures has been rarely addressed, which may bring safety doubts in indoor air purification due to possible formation of harmful compounds. Here we show that in photocatalytic oxidation of formaldehyde–toluene and formaldehyde–xylene mixtures, the introduction of Pd cocatalyst on TiO2 photocatalyst successfully inhibits the formation of toxic methylphenols, thus promoting the complete mineralization of VOC mixtures into CO2 via the harmless benzaldehyde intermediates. Mechanistic analysis reveals that the loading of Pd cocatalyst effectively removes the inherent surface −OH groups of TiO2, which significantly promotes the activation of O2 into radical dotOH radicals. The Pd cocatalyst also directs the radical dotOH radicals to attack the methyl group instead of the aromatic ring for the formation of benzaldehyde and its further oxidation to CO2, thus yielding a better overall photocatalytic performance

    Impaired Binocular Depth Perception in First-Episode Drug-Naive Patients With Schizophrenia

    No full text
    Binocular depth perception (BDP) is one of the most demanding visual function that involves both dorsal and ventral visual information streams. Substantial research has been conducted on the disruption of BDP in patients with schizophrenia. However, research on first-episode and drug-naive patients with schizophrenia (FEDN) is limited. To assess the BDP of schizophrenia patients while controlling for the effects of antipsychotics and the duration of illness. We investigated BDP in patients with schizophrenia via the Titmus Stereopsis Test in this study, by matching the patients into three groups: FEDN (n = 17), long duration of illness and medicine treatment (LDMT) (n = 31) and the healthy control group (n = 40). Results showed that both the FEDN (mean = 1.71, 95% confidence interval [CI]: [1.57, 1.84]) and LDMT (1.73, 95% CI: [1.66, 1.81]) patients displayed a significant decline (p = 0.01, Cohen’s d = 0.67, p = 0.001, Cohen’s d = 0.92, respectively) in depth perception compared to the healthy control (1.55, 95% CI: [1.48, 1.61]) group. Additionally, there were no significant differences (p = 0.68, Cohen’s d = 0.11) between the FEDN and LDMT groups, and no correlation (Pearson r = -0.16, p = 0.38, R2 = 0.03) was observed between the duration of illness and impaired BDP in the LDMT group. The proportion of individuals with stereopsis detection in either FEDN (12/17) or LDMT (26/31) groups under stereo threshold 63 arc seconds (″), were significantly lower (Pearson χ2 = 6.29, p = 0.043, φc = 0.27) compared to the healthy control group (38/40). Significant difference in stereopsis detection also occurred at 50″ (Pearson χ2 = 12.31, p = 0.001, φc = 0.37), 40″ (Pearson χ2 = 12.38, p = 0.002, φc = 0.38), 32″ (Pearson χ2 = 6.69, p = 0.035, φc = 0.28), 25″ (Pearson χ2 = 14.82, p = 0.001, φc = 0.41) and 20″ (Pearson χ2 = 6.73, p = 0.034, φc = 0.28) between the three groups. These findings showed a moderately strong association between schizophrenia and defective stereopsis

    Microarray-Based Detection and Clinical Evaluation for Helicobacter pylori Resistance to Clarithromycin or Levofloxacin and the Genotype of CYP2C19 in 1083 Patients

    No full text
    Background. Helicobacter pylori (H. pylori) is one of the most frequent and persistent bacterial infections that affect nearly half of the world’s population. Antibiotic resistance is a constantly evolving process and local surveillance of antibiotic resistance is warranted to guide clinicians in their choice of therapy. The aim of this study was to establish a microarray-based detection to identify H. pylori infection, clarithromycin and levofloxacin susceptibility, and CYP2C19 genetic polymorphism and guide to potential choice of proton pump inhibitor (PPI), antibiotic administration for tailored H. pylori eradication therapy. Methods. By analyzing the sequence of human genomic CYP2C19⁎2 and CYP2C19⁎3 and mutations within the 23S rRNA and gyrA gene regions conferring clarithromycin and levofloxacin resistance, respectively, we developed a microarray for individual therapy detection of H. pylori infection. Plasmids were established as positive or limit of detection (LOD) reference materials. The specificity and sensitivity of the microarray had been performed. And a total of 1083 gastric biopsy samples were tested and the Kappa value had been calculated between the array and Sanger sequencing. We also analyzed the resistance to clarithromycin and levofloxacin in China, as well as the CYP2C19 polymorphisms. Results. The LOD of detecting H. pylori was 103 CFU/mL and human genome DNA was 2 ng/μL. The detection results of 1083 gastric biopsy samples showed that 691 (63.80%) were H. pylori positive, of which 266 (38.49%) were resistant to clarithromycin, 192 (27.79%) were resistant to levofloxacin, and 61 (8.83%) were resistant to both of them. For the type of CYP2C19 polymorphism, 412 (38.04%) were homozygous fast type (HomEM), 574 (53%) were heterozygous EM (HetEM), and 97 (8.96%) were poor metabolizer (PM). Conclusions. The proposed microarray-based detection has high specificity, sensitivity, and reproducibility for detecting the resistance of clarithromycin or levofloxacin as well as CYP2C19 polymorphism, which may help to improve the clinical eradication rate of H. pylori
    corecore