59 research outputs found

    First identification of long non-coding RNAs in fungal parasite Nosema ceranae

    Get PDF
    International audienceAbstractNosema ceranae is a unicellular fungal parasite of honey bees and causes huge losses for apiculture. Until present, no study on N. ceranae long non-coding RNAs (lncRNAs) was documented. Here, we sequenced purified spores of N. ceranae using strand-specific library construction and high-throughput RNA sequencing technologies. In total, 83 novel lncRNAs were predicted from N. ceranae spore samples, including lncRNAs, long intergenic non-coding RNAs (lincRNAs), and sense lncRNAs. Moreover, these lncRNAs share similar characteristics with those identified in mammals and plants, such as shorter length and fewer exon number and transcript isoforms than protein-coding genes. Finally, the expression of 12 lncRNAs was confirmed with RT-PCR, confirming their true existence. To our knowledge, this is the first evidence of lncRNAs produced by a microsporidia species, offering novel insights into basic biology such as regulation of gene expression of this widespread taxonomic group

    Analysis of the response regulatory network of pepper genes under hydrogen peroxide stress

    Get PDF
    Hydrogen peroxide (H2O2) is a regulatory component related to plant signal transduction. To better understand the genome-wide gene expression response to H2O2 stress in pepper plants, a regulatory network of H2O2 stress-gene expression in pepper leaves and roots was constructed in the present study. We collected the normal tissues of leaves and roots of pepper plants after 40 days of H2O2 treatment and obtained the RNA-seq data of leaves and roots exposed to H2O2 for 0.5–24 h. By comparing the gene responses of pepper leaves and roots exposed to H2O2 stress for different time periods, we found that the response in roots reached the peak at 3 h, whereas the response in leaves reached the peak at 24 h after treatment, and the response degree in the roots was higher than that in the leaves. We used all datasets for K-means analysis and network analysis identified the clusters related to stress response and related genes. In addition, CaEBS1, CaRAP2, and CabHLH029 were identified through a co-expression analysis and were found to be strongly related to several reactive oxygen species-scavenging enzyme genes; their homologous genes in Arabidopsis showed important functions in response to hypoxia or iron uptake. This study provides a theoretical basis for determining the dynamic response process of pepper plants to H2O2 stress in leaves and roots, as well as for determining the critical time and the molecular mechanism of H2O2 stress response in leaves and roots. The candidate transcription factors identified in this study can be used as a reference for further experimental verification

    Photodynamic Therapy of Up-Conversion Nanomaterial Doped with Gold Nanoparticles

    No full text
    Two key concerns exist in contemporary cancer chemotherapy: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating the revolutionary cancer treatment techniques of photodynamic therapy (PDT) and photothermal therapy (PTT) proposed by many scholars. A photothermal treatment of cancer was synthesized using the hydrothermal method which has high photothermal conversion efficiency and can generate reactive oxygen species (ROS) in cells. Photothermal treatment of tumors has a good short-term effect and photodynamic therapy lasts longer. However, both PTT and PDT have their inevitable shortcomings and it is difficult to completely eradicate a tumor using a single mode of treatment. PTT and PDT synergistic treatment not only inherits the advantages of low toxicity and side effects of phototherapy but also enables the two treatment methods to complement each other. It is an effective strategy to improve curative effects and reduce toxic and side effects. Furthermore, gold doped UCNPs have an exceptionally high target recognition for tumor cells. The gold doped UCNPs, in particular, are non-toxic to normal tissues, endowing the as-prepared medications with outstanding therapeutic efficacy and exceptionally low side effects. These findings may encourage the creation of fresh, effective imaging-guided approaches to meet the goal of photothermal cancer therapy

    Synthesis of Rare-Earth Nanomaterials Ag-Doped NaYF4:Yb3+/Er3+@NaYF4:Nd3+@NaGdF4 for In Vivo Imaging

    No full text
    In this study. a novel near-infrared fluorescent-driven contrast agent (Ag-doped NaYF4:Yb3+/Er3+@NaYF4:Nd3+@NaGdF4) was synthesized using a coprecipitation-hydrothermal-solvothermal-solvothermal (CHSS) method. The results shows that hexagonal NaYF4:Yb3+/Er3+ with a diameter of 300 nm was successfully synthesized by the CHSS method. The new contrast agent was characterized using scanning electron microscopy, fluorescence spectrometry, transmission electron microscopy, energy-dispersive spectrometry and ultraviolet-visible light diffuse reflectance absorption spectroscopy. Even at low concentrations (0.2 M), this proposed contrast agent can be excited by near-infrared light with a wavelength of 980 nm and emits a dazzling green light with a wavelength of 540 nm, and the comparison of the luminescence intensity proves that doping with silver increases the luminescence intensity of the upconverted nanomaterial by nearly 13 times based on the calculated quantum yield. TEM images show the successful preparation of silver nanoparticles with a diameter of 30 nm, and the energy spectrum shows the successful doping of silver nanoparticles and the successful preparation of the core-shell structure of NaYF4:Yb3+/Er3+@NaYF4:Nd3+@NaGdF4. Furthermore, the mechanism of the increased luminous intensity has been studied using simulation calculations. Finally, cytotoxicity tests were used to test material which was modified by 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2K), and the biocompatibility was significantly improved, meeting the standard for biological applications

    Photodynamic Therapy and Multi-Modality Imaging of Up-Conversion Nanomaterial Doped with AuNPs

    No full text
    Two key concerns exist in contemporary cancer chemotherapy in clinic: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating a revolutionary cancer treatment technique, and photodynamic therapy (PDT) has been proposed by many scholars. A drug for photodynamic cancer treatment was synthesized using the hydrothermal method, which has a high efficiency to release reactive oxygen species (ROS). It may also be utilized as a clear multi-modality bioimaging platform for photoacoustic imaging (PAI) due to its photothermal effect, computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer diagnosis. Furthermore, Au-doped up-conversion nanoparticles (UCNPs) have an exceptionally high luminous intensity. The Au-doped UCNPs, in particular, are non-toxic to tissues without laser at an 808 nm wavelength, endowing the as-prepared medications with outstanding therapeutic efficacy but exceptionally low side effects. These findings may encourage fresh effective imaging-guided approaches to meet the goal of photodynamic cancer therapy to be created

    SiO<sub>2</sub> Coated Up-Conversion Nanomaterial Doped with Ag Nanoparticles for Micro-CT Imaging

    No full text
    In this study, a new method for synthesizing Ag-NaYF4:Yb3+/Er3+ @ SiO2 nanocomposites was introduced. Using a hydrothermal method, the synthesized Yb3+- and Er3+-codoped NaYF4 up-conversion luminescent materials and Ag nanoparticles were doped into up-conversion nanomaterials and coated with SiO2 up-conversion nanomaterials. This material is known as Ag-UCNPs@SiO2, it improves both the luminous intensity because of the doped Ag nanoparticles and has low cytotoxicity because of the SiO2 coating. The morphology of UCNPs was observed using scanning electron microscopy (SEM), and the mapping confirmed the successful doping of Ag nanoparticles. Successful coating of SiO2 was confirmed using transmission electron microscopy (TEM). Fluorescence spectra were used to compare changes in luminescence intensity before and after doping Ag nanoparticles. The reason for the increase in luminescence intensity after doping with Ag nanoparticles was simulated using first-principles calculations. The cytotoxicity of Ag-UCNPs@SiO2 was tested via the cell counting kit-8 (CCK-8) method, and its imaging ability was characterized using the micro-CT method

    Photothermal Effect and Multi-Modality Imaging of Up-Conversion Nanomaterial Doped with Gold Nanoparticles

    No full text
    Two key concerns exist in contemporary cancer chemotherapy in clinics: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating revolutionary cancer treatment techniques and photo-thermal therapy (PTT) has been proposed by many scholars. A drug for photothermal cancer treatment was synthesized using the hydrothermal method, which has a high light-to-heat conversion efficiency. It may also be utilized as a clear multi-modality bioimaging platform for photoacoustic imaging (PAI), computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer diagnosis. Furthermore, gold-doped upconverting nanoparticles (UCNPs) have an exceptionally high target recognition for tumor cells. The gold-doped UCNPs, in particular, are non-toxic to normal tissues, endowing the as-prepared medications with outstanding therapeutic efficacy but exceptionally low side effects. These findings may encourage the creation of fresh effective imaging-guided approaches to meet the goal of photothermal cancer therapy

    A RFID-enabled MES for real-time pharmaceutical manufacturing supervision

    No full text
    Pharmaceutical manufacturing is legally bound and supervised by government. Paper-based and manual pharmaceutical manufacturing systems are time-consuming, manpower-wasting, high-quality-cost and error-prone. This paper presents a Manufacturing Execution System (MES) to control production process on the shop floor. Some new advanced technologies, such as RFID, wireless manufacturing, real-time data collecting, real-time work-in-process (WIP) tracking and tracing methodology, are integrated in the MES. A wireless device named IDT (Intelligent Data Terminal) by utilizing 433MHz communication mode is deployed on the shop floor, which enables MES to perform real-time production control. Based on this real-time MES, real-time supervision can be adopted and adapted for FDA (Food and Drug Administration). This paper also provides a Web-Access monitoring on workshops and a Data-Transmission supervision on products. A case study is depicted to show the effectiveness of MES for pharmaceutical manufacturing as well as the advantages of real-time supervision for FDA. © 2010 IEEE.Link_to_subscribed_fulltex
    • …
    corecore