25 research outputs found

    Contemporary survival and anticoagulation of patients with atrial fibrillation: A community based cohort study in China

    Get PDF
    BackgroundsThe understanding of death in patients with atrial fibrillation (AF) in China is limited. This study aimed to assess the contemporary survival of AF patients in China and to explore risk factors for deaths.MethodsThis was a prospective community-based cohort study including 559 AF patients, who were followed-up from July 2015 to December 2020.ResultsDuring 66-month follow-up, there were 200 deaths (56.5% cardiovascular, 40.0% non-cardiovascular, and 3.5% unknown causes) among 559 AF patients with the median age of 76 years. The top three causes of death were heart failure (33.0%), ischemic stroke (17.0%) and cancer (16.5%). Multivariate Cox regression analysis indicated baseline variables positively associated with all-cause death were age (HR: 1.10, 95% CI: 1.08โ€“1.13), AF subtype (HR: 1.37, 95% CI: 1.08โ€“1.73), prior myocardial infarction (HR: 3.40, 95% CI: 1.48โ€“7.78), previous tumor (HR: 2.61, 95% CI: 1.37โ€“4.98), hypoglycemic therapy at baseline (HR: 1.81, 95% CI: 1.13โ€“2.91), but body weight (HR: 0.98, 95% CI: 0.97โ€“1.00) and use of calcium channel blocker (CCB) (HR: 0.62, 95% CI: 0.41โ€“0.95) played a protective role to all-cause death. Of patients who were alive at the end of follow-up, 24.0% were on oral anticoagulants (OAC) alone, 4.5% on dual antithrombotic therapy, 33.1% on antiplatelet agents alone and 38.4% weren't on any antithrombotic medication.ConclusionIschemic stroke still remains one of the leading causes of death and OAC is seriously underused in AF patients in China. Independent risk factors for death are age, AF subtype, previous tumor, prior myocardial infarction, hypoglycemic therapy, low body weight and no CCB use.Clinical Trial Registrationhttp://www.chictr.org.cn/ (ChiCTR-ICR-15007036)

    Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus

    No full text
    Protective coating of the byssus of mussels (Mytilus sp.) has been suggested as a new paradigm of medical coating due to its high extensibility and hardness co-existence without their mutual detriment. The only known biomacromolecule in the extensible and tough coating on the byssus is mussel foot protein-1 (mfp-1), which is made up with positively charged residues (similar to 20 mol%) and lack of negatively charged residues. Here, adhesion and molecular interaction mechanisms of Mytilus californianus foot protein-1 (mcfp-1) from California blue mussel were investigated using a surface forces apparatus (SFA) in buffer solutions of different ionic concentrations (0.2-0.7 M) and pHs (3.0-5.5). Strong and reversible cohesion between opposed positively charged mcfp-1 films was measured in 0.1 M sodium acetate buffer with 0.1 M KNO3. Cohesion of mcfp-1 was gradually reduced with increasing the ionic strength, but was not changed with pH variations. Oxidation of 3,4-dihydroxyphenylalanine (DOPA) residues of mcfp-1, a key residue for adhesive and coating proteins of mussel, didn't change the cohesion strength of mcfp-1 films, but the addition of chemicals with aromatic groups (i.e., aspirin and 4-methylcatechol) increased the cohesion. These results suggest that the cohesion of mcfp-1 films is mainly mediated by cation-it interactions between the positively charged residues and benzene rings of DOPA and other aromatic amino acids (similar to 20 mol% of total amino acids of mcfp-1), and pi-pi interactions between the phenyl groups in mcfp-1. The adhesion mechanism obtained for the mcfp-1 proteins provides important insight into the design and development of functional biomaterials and coatings mimicking the extensible and robust mussel cuticle coating. (C) 2011 Elsevier Ltd. All rights reserved.X1146Nsciescopu

    The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media

    No full text
    The transport of stabilized zerovalent iron nanoparticles (nZVI) has recently been the topic of extensive research due to its proven potential as an in situ remediation tool. However, these studies have ignored the effects of biofilms-complex aggregations of bacterial cells and excreted extracellular polymeric substances present in nearly all aquatic systems-on the transport of these particles. This study examines the effects of Pseudomonas aeruginosa (PAO1) biofilm, at a cell concentration similar to that reported for saturated aquifers, on the transport of commercially available, poly (acrylic acid) stabilized nZVI (pnZVI) in 14cm long columns packed with saturated glass beads at salt concentrations of 1 and 25mM NaCl. Compared to retention on uncoated columns, in the presence of biofilm the retention of pnZVI increased at higher ionic strength, while ionic strength played no role in retention of these nanoparticles in the absence of biofilm. The Tufenkji-Elimelech correlation equation predicts lower retention of pnZVI on biofilm coated columns compared to uncoated columns due to a lower Hamaker constant, and DLVO energy considerations predict the most favorable attachment to uncoated porous media at higher ionic strength. A steric (polymer-mediated) model that considers the combined influence of steric effects of polymers and DLVO interactions is shown to adequately describe particle retention in columns.</p

    Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus

    No full text
    Protective coating of the byssus of mussels (Mytilus sp.) has been suggested as a new paradigm of medical coating due to its high extensibility and hardness co-existence without their mutual detriment. The only known biomacromolecule in the extensible and tough coating on the byssus is mussel foot protein-1 (mfp-1), which is made up with positively charged residues (~20 mol%) and lack of negatively charged residues. Here, adhesion and molecular interaction mechanisms of Mytilus californianus foot protein-1 (mcfp-1) from California blue mussel were investigated using a surface forces apparatus (SFA) in buffer solutions of different ionic concentrations (0.2-0.7 M) and pHs (3.0-5.5). Strong and reversible cohesion between opposed positively charged mcfp-1 films was measured in 0.1 M sodium acetate buffer with 0.1 M KNO 3. Cohesion of mcfp-1 was gradually reduced with increasing the ionic strength, but was not changed with pH variations. Oxidation of 3,4-dihydroxyphenylalanine (DOPA) residues of mcfp-1, a key residue for adhesive and coating proteins of mussel, didn't change the cohesion strength of mcfp-1 films, but the addition of chemicals with aromatic groups (i.e., aspirin and 4-methylcatechol) increased the cohesion. These results suggest that the cohesion of mcfp-1 films is mainly mediated by cation-ฯ€ interactions between the positively charged residues and benzene rings of DOPA and other aromatic amino acids (~20 mol% of total amino acids of mcfp-1), and ฯ€-ฯ€ interactions between the phenyl groups in mcfp-1. The adhesion mechanism obtained for the mcfp-1 proteins provides important insight into the design and development of functional biomaterials and coatings mimicking the extensible and robust mussel cuticle coating.</p

    Understanding the molecular interactions of lipopolysaccharides during E. coli initial adhesion with a surface forces apparatus

    No full text
    Lipopolysaccharides (LPS) occupy 75% of the surface of Gram-negative bacteria. This work investigates the role of LPS during bacterial adhesion to solid substrates. Two model lipopolysaccharides, LPS1 and LPS2, were examined. LPS1 from E. coli JM109 has a full LPS chain consisting of lipid A, core polysaccharides, and O-antigen; LPS2 from K12 has a truncated chain without the O-antigen portion. Interactions between an LPS layer prealigned on polystyrene (PS) and three different substrates (mica, PS-coated mica, and 3-aminopropyltriethoxysilane (APTES)-functionalized mica) in 0.1 M NaCl were measured using a surface forces apparatus (SFA). The PS-supported LPS showed strong adhesion to APTES, weak adhesion to mica, and strong repulsion to PS substrate. Electrostatic interaction and steric effects contribute significantly to the interactions between the LPS and different substrates. The presence of long O-antigen chains in LPS1 reduces bacterial adhesion to various substrates because of the presence of an energetic barrier during the adsorption process, which is caused by the affinity of hydrophilic neutral O-antigen chains to water and the steric entropic barrier of LPS chains on the cell membrane surface.</p

    Probing molecular interaction mechanisms of organic fouling on polyamide membrane using a surface forces apparatus: Implication for wastewater treatment

    No full text
    Surface fouling is the dominant fouling mechanism of thin-film composite (TFC) membranes used in reverse osmosis (RO) technology. Understanding the complex interactions between foulant-membrane which drive the attachment and growth of foulants on membrane surface is of both fundamental and practical importance. This work aims to understand the molecular interaction mechanisms of organic fouling on RO-TFC membranes. A surface forces apparatus (SFA) was employed to directly measure the interaction forces and time-dependent adsorption behaviors between model organic foulants: humic acid (HA), bovine serum albumin (BSA), and lipopolysaccharides (LPS) and a polyamide (PA) thin film. PA thin film was prepared by interfacial condensation polymerization on mica substrates using m-phenylenediamine and 1,3,5-benzenetricarbonyltrichloride. The interaction forces between PA films and different foulant (HA, BSA, LPS) were directly measured under controlled solution chemistries in an asymmetric configuration (foulant-deposited PA films vs. PA films). The adsorption behaviors of these foulants on PA films were directly monitored in a symmetric configuration (PA films vs. PA films). These interactions were examined as a function of both contact time and solution chemistry (ionic strength). In asymmetrical configuration, both HA and BSA show repulsion with PA surface during approach and adhesion during separation, but LPS demonstrates repulsion only. In symmetrical configuration, all the foulants show adsorption on PA surface and the initial adsorption rate of foulant to PA surface follows the order of BSA > LPS > HA. The interaction mechanisms between PA films and foulants were discussed based on the interaction forces and interaction dynamics measurement.</p

    Agricultural wastes

    No full text
    Literature related to agricultural wastes and published in 2010 was summarized in this review. The review is divided into the following sections: reuse and recycle, waste treatment, waste characterization, waste management and pollution minimization.</p

    Adhesion mechanism in a DOPA-deficient foot protein from green mussels

    No full text
    The holdfast or byssus of Asian green mussels, Perna viridis, contains a foot protein, pvfp-1, that differs in two respects from all other known adhesive mussel foot proteins (mfp): (1) instead of the hallmark L-3,4-dihydroxyphenylalanine (DOPA) residues in mfp-1, for example, pvfp-1 contains C-2-mannosyl-7-hydroxytryptophan (Man7OHTrp). (2) In addition, pvfp-1 chains are not monomeric like mfp-1 but trimerized by collagen and coiled-coil domains near the carboxy terminus after a typical domain of tandemly repeated decapeptides. Here, the contribution of these peculiarities to adhesion was examined using a surface forces apparatus (SFA). Unlike previously studied mfp-1s, pvfp-1 showed significant adhesion to mica and, in symmetric pvfp-1 films, substantial cohesive interactions were present at pH 5.5. The role of Man7OHTrp in adhesion is not clear, and a DOPA-like role for Man7OHTrp in metal complexation (e.g., Cu2+, Fe3+) was not observed. Instead, cation-pi interactions with low desolvation penalty between Man7OHTrp and lysyl side chains and conformational changes (raveling and unraveling of collagen helix and coiled-coil domains) are the best explanations for the strong adhesion between pvfp-1 monomolecular films. The strong adhesion mechanism induced by cation-pi interactions and conformational changes in pvfp-1 provides new insights for the development of biomimetic underwater adhesives.open113535sciescopu

    Adhesion of mussel foot proteins to different substrate surfaces

    No full text
    Mussel foot proteins (mfps) have been investigated as a source of inspiration for the design of underwater coatings and adhesives. Recent analysis of various mfps by a surface forces apparatus (SFA) revealed that mfp-1 functions as a coating, whereas mfp-3 and mfp-5 resemble adhesive primers on mica surfaces. To further refine and elaborate the surface properties of mfps, the force-distance profiles of the interactions between thin mfp (i.e. mfp-1, mfp-3 or mfp-5) films and four different surface chemistries, namely mica, silicon dioxide, polymethylmethacrylate and polystyrene, were measured by an SFA. The results indicate that the adhesion was exquisitely dependent on the mfp tested, the substrate surface chemistry and the contact time. Such studies are essential for understanding the adhesive versatility of mfps and related/similar adhesion proteins, and for translating this versatility into a new generation of coatings and (including in vivo) adhesive materials.X1184sciescopu
    corecore