3 research outputs found

    Design, Synthesis, and Biomedical Application of Multifunctional Fluorescent Polymer Nanomaterials

    No full text
    Luminescent polymer nanomaterials not only have the characteristics of various types of luminescent functional materials and a wide range of applications, but also have the characteristics of good biocompatibility and easy functionalization of polymer nanomaterials. They are widely used in biomedical fields such as bioimaging, biosensing, and drug delivery. Designing and constructing new controllable synthesis methods for multifunctional fluorescent polymer nanomaterials with good water solubility and excellent biocompatibility is of great significance. Exploring efficient functionalization methods for luminescent materials is still one of the core issues in the design and development of new fluorescent materials. With this in mind, this review first introduces the structures, properties, and synthetic methods regarding fluorescent polymeric nanomaterials. Then, the functionalization strategies of fluorescent polymer nanomaterials are summarized. In addition, the research progress of multifunctional fluorescent polymer nanomaterials for bioimaging is also discussed. Finally, the synthesis, development, and application fields of fluorescent polymeric nanomaterials, as well as the challenges and opportunities of structure–property correlations, are comprehensively summarized and the corresponding perspectives are well illustrated

    BRG1 Promotes chromatin remodeling around DNA damage sites

    No full text
    Chromatin remodeling complexes play important roles in various DNA metabolism processes, including DNA damage repair. BRG1 is the core subunit of the SWI/SNF complex, which plays critical roles in cell cycle regulation, cell development, cell differentiation, and tumorigenesis. In the present study, we report that BRG1 depletion increased the percentage of apoptotic cells in etoposide-treated cells. Moreover, western blotting and immunofluorescence data showed that BRG1 depletion decreased H2AX phosphorylation and caused defective phosphorylated histone H2AX (γH2AX) clearance. Furthermore, we found that in both SW13 and U2OS cells, BRG1 expression could increase the sensitivity of genomic DNA to micrococcal nuclease (MNase) and facilitate chromatin relaxation around DNA damage sites. Thus, the results provide evidence that BRG1 plays an important role in early DNA damage repair by remodeling the chromatin structure near DNA damage sites
    corecore